diff --git a/docs/copying.html b/docs/copying.html index 344f5a79..8a4e0ee0 100644 --- a/docs/copying.html +++ b/docs/copying.html @@ -3,7 +3,7 @@ - + diff --git a/docs/description.json b/docs/description.json index 34385d3b..c10ab903 100644 --- a/docs/description.json +++ b/docs/description.json @@ -1,14 +1,14 @@ { "generator": "generate_html", "generator_version": "0.3.3", - "date_generated": "2024-02-10", + "date_generated": "2024-02-16", "package": { "name": "statistics-resampling", - "version": "5.5.6", + "version": "5.5.7", "description": "The statistics-resampling package is an Octave package and Matlab toolbox that can be used to perform a wide variety of statistics tasks using non-parametric resampling methods. In particular, the functions included can be used to estimate bias, uncertainty (standard errors and confidence intervals), prediction error, and calculate p-values for null hypothesis significance tests. Variations of the resampling methods are included that improve the accuracy of the statistics for small samples and samples with complex dependence structures.", "shortdescription": "The statistics-resampling package is an Octave package and Matlab toolbox that can be used to perform a wide variety of statistics tasks using non-parametric resampling methods", - "date": "2024-01-23", + "date": "2024-02-15", "title": "A statistics package with a variety of resampling tools", "author": "Andrew Penn ", "maintainer": "Andrew Penn ", diff --git a/docs/function/boot.html b/docs/function/boot.html index 53478835..ad690eab 100644 --- a/docs/function/boot.html +++ b/docs/function/boot.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/boot1way.html b/docs/function/boot1way.html index 91fae981..4e4e1a59 100644 --- a/docs/function/boot1way.html +++ b/docs/function/boot1way.html @@ -3,7 +3,7 @@ - + @@ -98,10 +98,11 @@

boot1way

has already been started. o 'nproc': nproc sets the number of parallel processes - 'PVAL = boot1way (DATA, GROUP, ...)' returns the p-value(s) from the - (multiple) comparison test(s). Note that the p-value returned will be + 'PVAL = boot1way (DATA, GROUP, ...)' returns the p-value(s) for the + (multiple) two-tailed test(s). Note that the p-value(s) returned are + already adjusted to control the family-wise, type I error rate and truncated at the resolution limit determined by the number of bootstrap - replicates, specifically 1/NBOOT(1). + replicates, specifically 1/NBOOT(1) '[PVAL, C] = boot1way (DATA, GROUP, ...)' also returns a 9 column matrix that summarises multiple comparison test results. The columns of C are: @@ -528,7 +529,7 @@

Demonstration 7

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | -0.5462 | -1.14 | .286 | +| 1 | 2 | 1 | -0.03715 | -0.09 | .890 | ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | @@ -573,7 +574,7 @@

Demonstration 8

----------------------------------------------------------------------------- | Comparison | Test # | Ref # | Difference | t | p | |------------|------------|------------|------------|------------|----------| -| 1 | 2 | 1 | -0.2579 | -0.34 | .595 | +| 1 | 2 | 1 | -0.4850 | -0.82 | .268 | ----------------------------------------------------------------------------- | GROUP # | GROUP label | N | diff --git a/docs/function/bootbayes.html b/docs/function/bootbayes.html index d0873e16..a52018b3 100644 --- a/docs/function/bootbayes.html +++ b/docs/function/bootbayes.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootcdf.html b/docs/function/bootcdf.html index 127005f3..f8730408 100644 --- a/docs/function/bootcdf.html +++ b/docs/function/bootcdf.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootci.html b/docs/function/bootci.html index 485773b8..88eadd23 100644 --- a/docs/function/bootci.html +++ b/docs/function/bootci.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootclust.html b/docs/function/bootclust.html index df1a3d86..e30e2ebf 100644 --- a/docs/function/bootclust.html +++ b/docs/function/bootclust.html @@ -3,7 +3,7 @@ - + @@ -170,11 +170,11 @@

Demonstration 1

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.2%, 97.4%) + Nominal coverage (and the percentiles used): 95% (1.2%, 97.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +3.553e-15 +2.578 +23.45 +34.52 + +29.65 +7.105e-15 +2.594 +23.78 +34.61

Demonstration 2

@@ -200,11 +200,11 @@

Demonstration 2

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.0%, 98.7%) + Nominal coverage (and the percentiles used): 95% (1.1%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 -0.03888 +2.965 +22.56 +35.97 + +29.65 -0.04239 +2.806 +23.09 +35.54

Demonstration 3

@@ -232,7 +232,7 @@

Demonstration 3

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.503 +42.64 +96.23 +236.8 + +171.5 -6.477 +42.25 +97.41 +237.3

Demonstration 4

@@ -262,7 +262,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -9.863 +33.35 +103.8 +213.9 + +171.5 -9.043 +33.06 +106.3 +214.9

Demonstration 5

@@ -285,11 +285,11 @@

Demonstration 5

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (12.1%, 98.7%) + Nominal coverage (and the percentiles used): 90% (11.8%, 98.6%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.748 +41.39 +115.7 +260.7 + +171.5 -6.846 +42.65 +113.4 +261.5

Demonstration 6

@@ -314,11 +314,11 @@

Demonstration 6

Resampling method: Balanced, bootstrap cluster resampling Number of resamples: 1999 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (13.3%, 98.7%) + Nominal coverage (and the percentiles used): 90% (13.8%, 98.8%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -9.228 +33.69 +124.0 +230.9 + +171.5 -9.368 +34.44 +123.6 +235.0

Demonstration 7

@@ -344,8 +344,8 @@

Demonstration 7

Bootstrap Statistics: original bias std_error CI_lower CI_upper - -0.1619 -0.0008760 +0.2501 -0.5536 +0.2779 - -0.09480 -0.002857 +0.1808 -0.3972 +0.2016 + -0.2285 -0.001846 +0.1541 -0.4659 +0.04210 + +0.08417 +0.003592 +0.1202 -0.1268 +0.2624

Demonstration 8

@@ -372,8 +372,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.1807 -0.01460 +0.1466 -0.04343 +0.4295 - -0.4998 +0.01527 +0.2427 -0.8388 -0.05809 + -0.08686 -0.02092 +0.1517 -0.3127 +0.1712 + +0.02272 -0.01786 +0.1145 -0.1460 +0.2314

Demonstration 9

@@ -404,7 +404,7 @@

Demonstration 9

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.02413 +0.1435 +0.3987 +0.9946 + +0.7764 -0.02403 +0.1424 +0.4034 +0.9933

Package: statistics-resampling

diff --git a/docs/function/bootknife.html b/docs/function/bootknife.html index 19644c57..fb4739c0 100644 --- a/docs/function/bootknife.html +++ b/docs/function/bootknife.html @@ -3,7 +3,7 @@ - + @@ -223,11 +223,11 @@

Demonstration 1

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Expanded bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (1.5%, 97.5%) + Nominal coverage (and the percentiles used): 95% (1.2%, 96.9%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 -2.842e-14 +2.565 +24.05 +34.54 + +29.65 -7.105e-15 +2.644 +23.44 +34.42

Demonstration 2

@@ -253,11 +253,11 @@

Demonstration 2

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (0.9%, 97.6%) + Nominal coverage (and the percentiles used): 95% (1.3%, 97.1%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +29.65 +8.171e-14 +2.755 +23.25 +34.76 + +29.65 -9.237e-14 +2.600 +23.70 +34.53

Demonstration 3

@@ -284,11 +284,11 @@

Demonstration 3

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 95% (1.9%, 97.1%) + Nominal coverage (and the percentiles used): 95% (2.1%, 98.1%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +30.86 -0.06037 +2.929 +24.48 +36.62 + +30.86 -0.08641 +2.807 +24.83 +36.99

Demonstration 4

@@ -317,7 +317,7 @@

Demonstration 4

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.877 +43.17 +95.11 +238.1 + +171.5 -6.472 +41.76 +98.00 +235.7

Demonstration 5

@@ -341,11 +341,11 @@

Demonstration 5

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 90% (10.9%, 98.4%) + Nominal coverage (and the percentiles used): 90% (12.2%, 98.7%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -6.520 +41.71 +112.6 +256.9 + +171.5 -6.664 +41.94 +115.2 +260.5

Demonstration 6

@@ -372,11 +372,11 @@

Demonstration 6

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile (equal-tailed) - Nominal coverage (and the percentiles used): 90% (2.6%, 97.4%) + Nominal coverage (and the percentiles used): 90% (2.5%, 97.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.422 +43.94 +86.71 +249.5 + +171.5 -6.919 +42.71 +85.52 +248.4

Demonstration 7

@@ -402,11 +402,11 @@

Demonstration 7

Number of resamples (outer): 1999 Number of resamples (inner): 199 Confidence interval (CI) type: Calibrated percentile - Nominal coverage (and the percentiles used): 90% (12.2%, 99.5%) + Nominal coverage (and the percentiles used): 90% (11.8%, 99.5%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +171.5 -7.409 +44.52 +115.3 +277.8 + +171.5 -6.993 +43.89 +113.9 +277.6

Demonstration 8

@@ -433,8 +433,8 @@

Demonstration 8

Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.05428 -0.009746 +0.1890 -0.2815 +0.3419 - +0.04332 +0.01423 +0.1413 -0.1364 +0.3158 + -0.08965 -0.03135 +0.1537 -0.3120 +0.1888 + -0.07272 -0.03510 +0.1855 -0.4404 +0.1336

Demonstration 9

@@ -461,134 +461,16 @@

Demonstration 9

Number of resamples (outer): 1999 Number of resamples (inner): 0 Confidence interval (CI) type: Bias-corrected and accelerated (BCa) - Nominal coverage (and the percentiles used): 95% (0.6%, 93.9%) + Nominal coverage (and the percentiles used): 95% (0.6%, 94.2%) Bootstrap Statistics: original bias std_error CI_lower CI_upper - +0.7764 -0.006419 +0.1362 +0.3369 +0.9503 + +0.7764 -0.007361 +0.1392 +0.2959 +0.9510

Demonstration 10

The following code

-
- 
- % Calculating confidence intervals for the coefficients from logistic 
- % regression using an example with an ordinal response from:
- % https://uk.mathworks.com/help/stats/mnrfit.html
- 
- %>>>>>>>>> This code block must be run first in Octave only >>>>>>>>>>>>
-
- try
-   pkg load statistics
-   load carbig
-   info = ver;
-   if ( str2num ({info.Version}{strcmp({info.Name},'statistics')}(1:3)) < 1.5)
-     error ('statistics package version must be > 1.5')
-   end
-   if (~ exist ('mnrfit', 'file'))
-     % Octave Statistics package does not currently have the mnrfit function,
-     % so we will use it's logistic_regression function for fitting ordinal
-     % models instead. 
-     function [B, DEV] = mnrfit (X, Y, varargin)
-       % Note that if the outcome has more than two levels, the
-       % logistic_regression function is only suitable when the
-       % outcome is ordinal, so we would need to use append 'model',
-       % 'ordinal' as a name-value pair in MATLAB when executing
-       % it's mnrfit function (see below)
-       [INTERCEPT, SLOPE, DEV] = logistic_regression (Y - 1, X, false);
-       B = cat (1, INTERCEPT, SLOPE);
-     end
-   end
-   stats_pkg = true;
- catch
-   stats_pkg = false;
-   fprintf ('\nSkipping this demo...')
-   fprintf ('\nRequired features of the statistics package not found.\n\n');
- end
-
- %<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-
- if (stats_pkg)
-
-   %>>>>>>>>>>>>>>>>>>> This code block is the demo >>>>>>>>>>>>>>>>>>>>>>
-
-   % This demo requires the statistics package in Octave (equivalent to
-   % the Statistics and Machine Learning Toolbox in Matlab)
-
-   % Create the dataset
-   load carbig
-   X = [Acceleration Displacement Horsepower Weight];
-
-   % The responses 1 - 4 correspond to the following classification:
-   % 1:  9 - 19 miles per gallon
-   % 2: 19 - 29 miles per gallon
-   % 3: 29 - 39 miles per gallon
-   % 4: 39 - 49 miles per gallon
-   miles = [1,1,1,1,1,1,1,1,1,1,NaN,NaN,NaN,NaN,NaN,1,1,NaN,1,1,2,2,1,2, ...
-            2,2,2,2,2,2,2,1,1,1,1,2,2,2,2,NaN,2,1,1,2,1,1,1,1,1,1,1,1,1, ...
-            2,2,1,2,2,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1, ...
-            1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1, ...
-            1,1,2,2,2,1,2,2,2,1,1,3,2,2,2,1,2,2,1,2,2,2,1,3,2,3,2,1,1,1, ...
-            1,1,1,1,1,3,2,2,3,3,2,2,2,2,2,3,2,1,1,1,1,1,1,1,1,1,1,1,2,2, ...
-            1,3,2,2,2,2,2,2,1,3,2,2,2,2,2,3,2,2,2,2,2,1,1,1,1,2,2,2,2,3, ...
-            2,3,3,2,1,1,1,3,3,2,2,2,1,2,2,1,1,1,1,1,3,3,3,2,3,1,1,1,1,1, ...
-            2,2,1,1,1,1,1,3,2,2,2,3,3,3,3,2,2,2,4,3,3,4,3,2,2,2,2,2,2,2, ...
-            2,2,2,2,1,1,2,1,1,1,3,2,2,3,2,2,2,2,2,1,2,1,3,3,2,2,2,2,2,1, ...
-            1,1,1,1,1,2,1,3,3,3,2,2,2,2,2,3,3,3,3,2,2,2,3,4,3,3,3,2,2,2, ...
-            2,3,3,3,3,3,4,2,4,4,4,3,3,4,4,3,3,3,2,3,2,3,2,2,2,2,3,4,4,3, ...
-            3,3,3,3,3,3,3,3,3,3,3,3,3,2,NaN,3,2,2,2,2,2,1,2,2,3,3,3,2,2, ...
-            2,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,2,4,3,2,3]';
-
-   % Bootsrap confidence intervals for each logistic regression coefficient
-   bootknife ({X, miles}, 1999, ...
-               @(X, miles) mnrfit (X, miles, 'model', 'ordinal'));
-
-   % Where the first 3 rows are the intercept terms, and the last 4 rows
-   % are the slope coefficients. For each predictor, the slope coefficient
-   % corresponds to how a unit change in the predictor impacts on the odds,
-   % which are proportional across the (ordered) catagories, where each
-   % log-odds in each case is:
-   %
-   %       ln ( ( P[below] ) / ( P[above] ) )
-   %
-   % i.e. in mnrfit, the reference class is the higher of the two classes.
-   % Therefore, a positive slope value indicates that a unit increase in the
-   % predictor increases the odds of running at fewer miles per gallon.
-
-   % Note that ordinal and multinomial logistic regression (appropriate
-   % for ordinal and nominal responses respectively) would be equivalent
-   % for any binary outcome
-
-   %<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- 
- end
-

Produces the following output

-
Summary of nonparametric bootstrap estimates of bias and precision
-******************************************************************************
-
-Bootstrap settings: 
- Function: @(X, miles) mnrfit (X, miles, 'model', 'ordinal')
- Resampling method: Balanced, bootknife resampling 
- Number of resamples (outer): 1999 
- Number of resamples (inner): 0 
- Confidence interval (CI) type: Bias-corrected and accelerated (BCa) 
- Nominal coverage: 95%
-
-Bootstrap Statistics: 
- original     bias         std_error    CI_lower     CI_upper  
- -16.69       -0.5265      +2.080       -20.46       -12.37     
- -11.72       -0.3715      +1.819       -15.03       -7.926     
- -8.061       -0.2689      +1.710       -11.28       -4.570     
- +0.1048      +0.005787    +0.09220     -0.09224     +0.2716    
- +0.01034     +0.0006836   +0.006734    -0.002759    +0.02344   
- +0.06452     +0.002395    +0.01629     +0.03476     +0.09525   
- +0.001664    +5.972e-06   +0.0007568   +0.0002100   +0.003176
-
- -

Demonstration 11

-
-

The following code

 
  % Air conditioning failure times (x) in Table 1.2 of Davison A.C. and
@@ -696,7 +578,7 @@ 

Demonstration 11

gives an example of how 'bootknife' is used.

-

Demonstration 12

+

Demonstration 11

The following code

diff --git a/docs/function/bootlm.html b/docs/function/bootlm.html
index b3a94bd7..57231ac7 100644
--- a/docs/function/bootlm.html
+++ b/docs/function/bootlm.html
@@ -3,7 +3,7 @@
 
   
   
-  
+  
   
   
   
@@ -459,6 +459,16 @@ 

bootlm

model. Computations of the statistics in AOVSTAT are compatible with the 'clustid' and 'blocksz' options. + The bootlm function treats all model predictors as fixed effects during + ANOVA tests. While any type of predictor, be it a fixed effect or + nuisance random effect, can be included in the model as a main effect, + any p-values returned are only meaningful for the main effects and + interactions that involve just fixed effects - same goes for the + p-values and confidence intervals for the associated regression + coefficients. Note also that the bootlm function can be used to compute + p-values for ANOVA with nested data structures by cluster bootstrap + resampling (see the 'clustid' option). + ** See demo 7 for an example of how to obtain results for ANOVA using type II sums-of-squares, which test hypotheses that give results invariant to the order of the predictors, regardless of whether diff --git a/docs/function/bootmode.html b/docs/function/bootmode.html index c7cb49e1..2b3a07a9 100644 --- a/docs/function/bootmode.html +++ b/docs/function/bootmode.html @@ -3,7 +3,7 @@ - + @@ -51,8 +51,8 @@

bootmode

Parallel package (in Octave), or the Parallel Computing Toolbox (in Matlab). - '[H, P] = bootmode (X, M, ...)' also returns the p-value of the - bootstrap test. + '[H, P] = bootmode (X, M, ...)' also returns the two-tailed p-value of + the bootstrap hypothesis test. '[H, P, CRITVAL] = bootmode (X, M, ...)' also returns the critical bandwidth (i.e.the smallest bandwidth achievable to obtain a kernel @@ -149,9 +149,9 @@

Demonstration 1

Produces the following output

ans = Summary of results:
 
-ans = H1 is 1 with p = 0.0005 so reject the null hypothesisthat there is 1 mode
+ans = H1 is 1 with p = 0.001 so reject the null hypothesisthat there is 1 mode
 
-ans = H2 is 0 with p = 0.324 so accept the null hypothesis that there are 2 modes
+ans = H2 is 0 with p = 0.311 so accept the null hypothesis that there are 2 modes

Package: statistics-resampling

diff --git a/docs/function/bootstrp.html b/docs/function/bootstrp.html index c14cae75..16a25ea1 100644 --- a/docs/function/bootstrp.html +++ b/docs/function/bootstrp.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/bootwild.html b/docs/function/bootwild.html index 9fb40171..f099dc5d 100644 --- a/docs/function/bootwild.html +++ b/docs/function/bootwild.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/cor.html b/docs/function/cor.html index 00f34e12..efd5af3c 100644 --- a/docs/function/cor.html +++ b/docs/function/cor.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/credint.html b/docs/function/credint.html index 27e3098e..22d9d37d 100644 --- a/docs/function/credint.html +++ b/docs/function/credint.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/deffcalc.html b/docs/function/deffcalc.html index fb742480..612805cf 100644 --- a/docs/function/deffcalc.html +++ b/docs/function/deffcalc.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/images/boot1way_701.png b/docs/function/images/boot1way_701.png index 16c2cfff..0ce69de9 100644 Binary files a/docs/function/images/boot1way_701.png and b/docs/function/images/boot1way_701.png differ diff --git a/docs/function/images/boot1way_801.png b/docs/function/images/boot1way_801.png index 400c34f4..4e567463 100644 Binary files a/docs/function/images/boot1way_801.png and b/docs/function/images/boot1way_801.png differ diff --git a/docs/function/randtest2.html b/docs/function/randtest2.html index b54c1269..5c3ee797 100644 --- a/docs/function/randtest2.html +++ b/docs/function/randtest2.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/sampszcalc.html b/docs/function/sampszcalc.html index b63ebf3f..aba0eabd 100644 --- a/docs/function/sampszcalc.html +++ b/docs/function/sampszcalc.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/smoothmad.html b/docs/function/smoothmad.html index a376f818..4b1db410 100644 --- a/docs/function/smoothmad.html +++ b/docs/function/smoothmad.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function/smoothmedian.html b/docs/function/smoothmedian.html index 26521227..097de22e 100644 --- a/docs/function/smoothmedian.html +++ b/docs/function/smoothmedian.html @@ -3,7 +3,7 @@ - + diff --git a/docs/function_reference.html b/docs/function_reference.html index 554df13d..089802d8 100644 --- a/docs/function_reference.html +++ b/docs/function_reference.html @@ -3,7 +3,7 @@ - + diff --git a/docs/index.html b/docs/index.html index aea19b31..089ea43b 100644 --- a/docs/index.html +++ b/docs/index.html @@ -3,7 +3,7 @@ - + @@ -27,8 +27,8 @@

About this package

- - + +
Package Version:5.5.6
Last Release Date:2024-01-23
Package Version:5.5.7
Last Release Date:2024-02-15
Package Author:Andrew Penn <andy.c.penn@gmail.com>
Package Maintainer:Andrew Penn <andy.c.penn@gmail.com>
License:GPLv3+