-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_pl.py
130 lines (105 loc) · 5.94 KB
/
train_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os.path as osp
import torch
from torch.utils.data.dataloader import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from utils.read_config import yaml_to_object
from utils.dataset import MPIIDataset
from utils.annotation_handler import MPIIAnnotationHandler
from models import PoseNet, HeatMapLossBatch
torch.cuda.empty_cache()
def data_loader_creator(config):
data_path = osp.join(config.root_dir, config.data.MPII.path.base)
training_annotation_file = osp.join(data_path, config.data.MPII.path.annotations.training)
validation_annotation_file = osp.join(data_path, config.data.MPII.path.annotations.validation)
image_dir = osp.join(data_path, config.data.MPII.path.images)
data_handle = MPIIAnnotationHandler(training_annotation_file, validation_annotation_file, image_dir)
train_indices, valid_indices = data_handle.split_data()
image_scale_factor_range = (float(config.neural_network.train.data_augmentation.image_scale_factor.min), float(config.neural_network.train.data_augmentation.image_scale_factor.max))
input_resolution = int(config.neural_network.train.input_resolution)
output_resolution = int(config.neural_network.train.output_resolution)
num_parts = int(config.data.MPII.parts.max_count)
reference_image_size = int(config.data.MPII.reference_image_size)
max_rotation_angle = float(config.neural_network.train.data_augmentation.rotation_angle_max)
image_color_jitter_probability = float(config.neural_network.train.data_augmentation.image_color_jitter_probability)
image_horizontal_flip_probability = float(config.neural_network.train.data_augmentation.image_horizontal_flip_probability)
hue_max_delta = float(config.neural_network.train.data_augmentation.hue_max_delta)
saturation_min_delta = float(config.neural_network.train.data_augmentation.saturation_min_delta)
brightness_max_delta = float(config.neural_network.train.data_augmentation.brightness_max_delta)
contrast_min_delta = float(config.neural_network.train.data_augmentation.contrast_min_delta)
train_data = MPIIDataset(
indices=train_indices, mpii_annotation_handle=data_handle,
horizontally_flipped_keypoint_ids=config.data.MPII.parts.flipped_ids,
input_resolution=input_resolution,
output_resolution=output_resolution,
num_parts=num_parts,
reference_image_size=reference_image_size,
max_rotation_angle=max_rotation_angle,
image_scale_factor_range=image_scale_factor_range,
image_color_jitter_probability=image_color_jitter_probability,
image_horizontal_flip_probability=image_horizontal_flip_probability,
hue_max_delta=hue_max_delta,
saturation_min_delta=saturation_min_delta,
brightness_max_delta=brightness_max_delta,
contrast_min_delta=contrast_min_delta
)
valid_data = MPIIDataset(
indices=valid_indices, mpii_annotation_handle=data_handle,
horizontally_flipped_keypoint_ids=config.data.MPII.parts.flipped_ids,
input_resolution=input_resolution,
output_resolution=output_resolution,
num_parts=num_parts,
reference_image_size=reference_image_size,
max_rotation_angle=max_rotation_angle,
image_scale_factor_range=image_scale_factor_range,
image_color_jitter_probability=image_color_jitter_probability,
image_horizontal_flip_probability=image_horizontal_flip_probability,
hue_max_delta=hue_max_delta,
saturation_min_delta=saturation_min_delta,
brightness_max_delta=brightness_max_delta,
contrast_min_delta=contrast_min_delta
)
train_dataloader = DataLoader(train_data, batch_size=config.neural_network.train.batch_size, num_workers=config.neural_network.train.num_workers)
valid_dataloader = DataLoader(valid_data, batch_size=config.neural_network.train.batch_size, num_workers=config.neural_network.train.num_workers)
return train_dataloader, valid_dataloader
class PoseNetLightning(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.config = config
self.posenet = PoseNet(config.neural_network.PoseNet.n_hourglass,
config.neural_network.PoseNet.in_channels,
config.neural_network.PoseNet.out_channels,
config.neural_network.PoseNet.channel_increase)
self.heatmap_loss_batch = HeatMapLossBatch()
def forward(self, x):
out = self.posenet(x)
return out
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.posenet(x)
loss = self.heatmap_loss_batch(y_hat, y)
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.posenet(x)
loss = self.heatmap_loss_batch(y_hat, y)
self.log('valid_loss', loss)
return loss
def configure_optimizers(self):
lr = self.config.neural_network.train.learning_rate
# optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=lr)
optimizer = torch.optim.Adam(self.parameters(), lr=lr)
return optimizer
def load_configuration(configuration_file_path="./config.yaml"):
configuration = yaml_to_object(configuration_file_path)
setattr(configuration, "root_dir", osp.dirname(osp.abspath(__file__)))
return configuration
config = load_configuration(configuration_file_path="./config.yaml")
train_dataloader, valid_dataloader = data_loader_creator(config)
min_epochs = config.neural_network.train.epochs # number of cycles over dataset
# default logger used by trainer
logger = TensorBoardLogger(save_dir=osp.join(config.root_dir, config.neural_network.train.logs.path), version=1, name='posenet_logs')
posenet = PoseNetLightning(config)
trainer = pl.Trainer(gpus=1, min_epochs=min_epochs, logger=logger)
trainer.fit(posenet, train_dataloader, valid_dataloader)