-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaoespy0.1.py
832 lines (603 loc) · 23.3 KB
/
aoespy0.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 19 04:29:53 2018
@author: afahad ([email protected])
"""
## Python AOES library ! ##
# Loading necessary Libraries #
from numpy import *
from scipy import stats
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from netCDF4 import Dataset as nc
import mpl_toolkits.basemap
d=plt.show
from mpl_toolkits.basemap import shiftgrid
#functions
## d(): displays plot based on matplotlib.pyplot
## shiftgrid:
# dataout, newlon= shiftgrid(lon0, datain, lonsin, start=True, cyclic=360.0)
#inputs: lon0=starting longitude for shifted grid (ending longitude if start=False)
# datain= original data with longitude the right-most dimension.
# lonsin= original longitudes
# start= if True, lon0 represents the starting longitude of the new grid. if False, lon0 is the ending longitude. Default True.
# cyclic= width of periodic domain (default 360)
#outputs: dataout= shifted input data
# newlon= new shifted longitude array
## an output default figure size
def f():
plt.figure(figsize=(10, 6))
plt.subplots_adjust(left=.05, bottom=.05, right=.95, top=.95)
## Read netcdf data
#data=rnc(var,file)
#inputs: var= string variable name that needs to be read
# file=string file path
#outputs: data= data read from the file
def rnc(var,file):
f = nc(file)
v = f.variables[var][:]
f.close()
return v
## linear Trend
#vart, varp=ltrend(var,lon,lat,time,sig=False)
#inputs: var= variable as 3D [time,lat,lon] or 2D [time,lat*lon]
# lon=lon array
# lat=lat array
# time=time array
# sig= alpha significance value (e.g. 0.05, 0.1), if given the output data
# will have nan values in insignificant points (default False)
#outputs: #vart= linear trend of the variable along time dimension
#varp= P value of the trend
def ltrend(var,lon,lat,time,sig=False):
nlon=len(lon)
nlat=len(lat)
nt=len(time)
vart=zeros(nlat*nlon)
varp=zeros(nlat*nlon)
if len(var.shape)== 3:
var=reshape(var,(nt,nlat*nlon))
print('l_trend: assuming variable as 3D [time,lat,lon]')
for i in range(nlat*nlon):
v=var[:,i]
vart[i], intercept, r_value, varp[i], std_err=stats.linregress(time,v)
vart=reshape(vart,(nlat,nlon))
varp=reshape(varp,(nlat,nlon))
#return (vart,varp)
elif len(var.shape)== 2:
print('l_trend: assuming variable as 2D [time,lat*lon]')
for i in range(nlat*nlon):
v=var[:,i]
#vart[i]=stats.linregress(time,v).slope
vart[i], intercept, r_value, varp[i], std_err=stats.linregress(time,v)
vart=reshape(vart,(nlat,nlon))
varp=reshape(varp,(nlat,nlon))
#return vart
else:
raise ValueError('Variable shape is not 2D or 3D. plese instert variable in this format var[time,lat,lon] or var[time,lon*lat]')
if sig==False:
return (vart, varp)
else:
for i in range(nlat):
for j in range (nlon):
if varp[i,j]>sig:
vart[i,j]=nan
return (vart, varp)
## mapping functing
#plot(var,lon,lat,title='',clf=[],cl=[], cmap='coolwarm',lon1=-180,lon2=180,lat1=-90,lat2=90,bar=1,p=1,m=1)
#inputs: var= 2D variable that will be plotted
# lon=lon
# lat=lat
# title='title'
# clf= array of filled contoured levels
# cl= array of contoured levels (optional)
# cmap= string of name of colorbar (default coolwarm, for list: matplotlib colorbars)
# lon1= start of lon (default -180)
# lon2= end of lon (default 180)
# lat1= start of lat (default -90)
# lat2= end of lat (default 90)
# bar= 1 (default) to plot colorbar; or 0 doesn't plot colorbar in figure
# p= 1 (default) plots parallel line, or 0 doesn't plot
# m= 1 (default) plots meridioinal line, or 0 doesn't plot
def plot(var,lon,lat,title='',clf=[],cl=[], cmap='coolwarm',lon1=-180,lon2=180,lat1=-90,lat2=90,bar=1,p=1,m=1,lmask=0):
if lon1== -180:
if lon2==180:
if nanmax(lon)>181:
lon1=0
lon2=360
if lon1== -180:
if lon2==180:
if lat1==-90:
if lat2==90:
lon1=nanmin(lon)
lon2=nanmax(lon)
lat1=nanmin(lat)
lat2=nanmax(lat)
map = Basemap(projection='cyl',llcrnrlat=lat1,urcrnrlat=lat2,\
llcrnrlon=lon1,urcrnrlon=lon2,resolution='l')
map.drawcoastlines(linewidth=.6,)
parallels = arange(lat1,lat2+1, (lat2-lat1)//6)
meridians = arange(lon1,lon2,(lon2-lon1)//6)
if lmask==1:
map.fillcontinents(color='white', lake_color='white', ax=None, zorder=None, alpha=None)
if m==1:
map.drawmeridians(meridians,labels=[0,0,0,1],linewidth=0.05,fontsize=8,dashes=[1, 1000])
if m==0:
map.drawmeridians(meridians,linewidth=0.05,fontsize=8,dashes=[1, 1000])
if p==1:
map.drawparallels(parallels,labels=[1,0,0,0],linewidth=0.05,fontsize=8,dashes=[1, 1000])
if p==0:
map.drawparallels(parallels,linewidth=0.05,fontsize=8,dashes=[1, 1000])
# map.drawparallels(parallels,plabels,linewidth=0.02,fontsize=8)
# map.drawmeridians(meridians,mlabels,linewidth=0.02,fontsize=8)
lons,lats= meshgrid(lon,lat)
x,y = map(lons,lats)
if len(cl)==1:
if len(clf)>1:
csf = map.contourf(x,y,var,clf,extend='both',cmap=cmap)
if bar==1:
cb = map.colorbar(csf,"bottom", extend='both',size="3%", pad="12%")
cs = map.contour(x,y,var,cl,colors='k',linewidths=0.3)
#plt.clabel(cs, inline=True, fmt='%1.1f', fontsize=6, colors='k')
plt.title(title,fontsize=9)
else:
csf = map.contourf(x,y,var,extend='both',cmap=cmap)
#cb = map.colorbar(csf,"bottom", extend='both',size="3%", pad="9%")
if bar==1:
cb = map.colorbar(csf,"bottom", extend='both',size="3%", pad="12%")
cs = map.contour(x,y,var,colors='k',linewidths=0.3)
#plt.clabel(cs, inline=True, fmt='%1.1f', fontsize=6, colors='k')
plt.title(title,fontsize=9)
else:
if len(clf)>1:
csf = map.contourf(x,y,var,clf,extend='both',cmap=cmap)
if bar==1:
cb = map.colorbar(csf,"bottom", extend='both',size="5%", pad="15%")
#plt.clabel(cs, inline=True, fmt='%1.1f', fontsize=6, colors='k')
plt.title(title,fontsize=9)
else:
csf = map.contourf(x,y,var,extend='both',cmap=cmap)
#cb = map.colorbar(csf,"bottom", extend='both',size="3%", pad="9%")
if bar==1:
cb = map.colorbar(csf,"bottom", extend='both',size="3%", pad="12%")
#plt.clabel(cs, inline=True, fmt='%1.1f', fontsize=6, colors='k')
plt.title(title,fontsize=9)
## 3D seasonal decompose from monthly time dinemsions to annual, DJF, MAM, JJA, SON
#ann, djf,mam,jja,son= season(data,lon,lat,time)
#inputs: data=3D data[time lat lon]
# lon=lon
# lat=lat
# time=time
#outputs: ann= annual mean
# djf= DJF mean
# mam= MAM mean
# jja= JJA mean
# son= SON mean
def season(data,lon,lat,time):
nlon=len(lon)
nlat=len(lat)
nt=len(time)
mo=12
yr=nt//mo
data=reshape(data,(yr,mo,nlat,nlon))
ann=nanmean(data,1)
d=data[:-1,11:12,:,:]
j=data[1:,0:1,:,:]
f=data[1:,1:2,:,:]
#jf=data[:,0:2,:,:]
#djf=concatenate((d,jf),axis=1)
d=squeeze(nanmean(d,1))
j=squeeze(nanmean(j,1))
f=squeeze(nanmean(f,1))
#jf=squeeze(nanmean(jf,1))
djf=(d+j+f)/3
mam=squeeze(nanmean(data[1:,2:5,:,:],1))
jja=squeeze(nanmean(data[1:,5:8,:,:],1))
son=squeeze(nanmean(data[1:,8:11,:,:],1))
return (ann, djf,mam,jja,son)
## 1D seasonal decompose from monthly time dinemsions to annual, DJF, MAM, JJA, SON
#ann, djf,mam,jja,son= season(data,time)
#inputs: data=1D data[time]
# time=time
#outputs: ann= annual mean
# djf= DJF mean
# mam= MAM mean
# jja= JJA mean
# son= SON mean
def season1d(data,time):
nt=len(time)
mo=12
yr=nt//mo
data=reshape(data,(yr,mo))
ann=nanmean(data,1)
d=data[:-1,11:12]
j=data[1:,0:1]
f=data[1:,1:2]
#jf=data[:,0:2]
#djf=concatenate((d,jf),axis=1)
#djf=squeeze(nanmean(djf,1))
d=squeeze(nanmean(d,1))
j=squeeze(nanmean(j,1))
f=squeeze(nanmean(f,1))
#jf=squeeze(nanmean(jf,1))
djf=(d+j+f)/3
mam=squeeze(nanmean(data[1:,2:5],1))
jja=squeeze(nanmean(data[1:,5:8],1))
son=squeeze(nanmean(data[1:,8:11],1))
return (ann, djf,mam,jja,son)
## interpolates data in desired grid
#data_interp=interp(var, lon, lat, new_lons, new_lats,time=arange(1))
#inputs: var= input variable 2D or 3D (includes time dimension)
# lon= lon of the variable
# lat= lat of the variable
# new_lons= new lon that grid needs to be shifted to
# new_lats= new lat that grid needs to be shifted to
# time= (optional)
#outputs: data_interp= intrepolated data to new grids
def interp(var, lon, lat, new_lons, new_lats,time=arange(1)):
nlon=len(new_lons)
nlat=len(new_lats)
new_lons, new_lats=meshgrid(new_lons, new_lats)
if len(time)==1:
data_interp=zeros((nlat,nlon))
data=var[:,:]
data_interp[:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
else:
nt=len(time)
data_interp=zeros((nt,nlat,nlon))
for i in range(nt):
data=squeeze(var[i,:,:])
data_interp[i,:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
return data_interp
## write variables in netcdf output. This function can write upto 2 variables in one file and required dimensions
#wnc(x,y,data_out1,var1='data1',data_out2=array([1]),var2='data2',t=array([1]),e=array([1]),file='output')
#inputs: x=lon
# y=lat
# data_out1=first variable to write in file
# var1='data1' ; first varible name assigned in the file
# data_out2=second variable to write in file; (optional)
# var2='data2'; first varible name assigned in the file (if second variable is given to write)
# t= time dimension array
# e= ensemble dimension array (can be used as vertical level)
# file= string of output file name (dont need to add .nc)
def wnc(x,y,data_out1,var1='data1',data_out2=array([1]),var2='data2',t=array([1]),e=array([1]),file='output'):
nx = len(x); ny = len(y)
if len(t)==1:
nt=1
else:
nt=len(t)
if len(e)==1:
ne=1
else:
ne=len(e)
out=file+'.nc'
# open a new netCDF file for writing.
ncfile = nc(out,'w')
ncfile.createDimension('lon',nx)
ncfile.createDimension('lat',ny)
if len(t)>1:
ncfile.createDimension('time',nt)
if len(e)>1:
ncfile.createDimension('ens',ne)
# create the variable (4 byte integer in this case)
# first argument is name of variable, second is datatype, third is
# a tuple with the names of dimensions.
# write data to variable.
lon = ncfile.createVariable('lon',dtype('float').char,('lon'))
lon[:] = x
lon.units='degrees East'
lon.long_name = 'Longitude'
lat = ncfile.createVariable('lat',dtype('float').char,('lat'))
# write data to variable.
lat[:] = y
lat.units='degrees North'
lat.long_name = 'Latitude'
if len(t)>1:
time = ncfile.createVariable('time',dtype('float').char,('time'))
# write data to variable.
time[:] = t
time.units='months since 1979-01-01 00:00'
if len(e)>1:
ens = ncfile.createVariable('ens',dtype('float').char,('ens'))
ens[:] = e
# write data 1
if len(e)==1:
if len(t)>1:
data1 = ncfile.createVariable(var1,dtype('float').char,('time','lat','lon'))
# write data to variable.
data1[:] = data_out1
if len(t)==1:
if len(e)>1:
data1 = ncfile.createVariable(var1,dtype('float').char,('ens''lat','lon'))
# write data to variable.
data1[:] = data_out1
if len(t)>1:
if len(e)>1:
data1 = ncfile.createVariable(var1,dtype('float').char,('ens','time','lat','lon'))
# write data to variable.
data1[:] = data_out1
# write data 2
if len(data_out2)>1:
if len(e)==1:
if len(t)>1:
data2 = ncfile.createVariable(var1,dtype('float').char,('time','lat','lon'))
# write data to variable.
data2[:] = data_out2
if len(t)==1:
if len(e)>1:
data2 = ncfile.createVariable(var1,dtype('float').char,('ens','lat','lon'))
# write data to variable.
data2[:] = data_out2
if len(t)>1:
if len(e)>1:
data2 = ncfile.createVariable(var1,dtype('float').char,('ens','time','lat','lon'))
# write data to variable.
data2[:] = data_out2
ncfile.close()
## convert vertical pressure levels to geomatric height
# H = p2h(T,slp,P)
#equation from Hypsometric
# H= z2-z1= R*T/g * ln(P0/P)
# H= Height
# g=9.81 m/s2
# R=287.04 J K-1 kg-1
#inputs: T = air temperature one array (Kelvin)
# SLP = sea level pressure one array (hPa)
# P = Pressure level that needs to be converted in to height (hPa)
#outputs: H = Height (meters)
#example: #h=zeros(ta.shape)
# for i in range(len(lev)):
# for j in range(len(lat)):
# for k in range(len(lon)):
# h[i,j,k]=p2h(T[i,j,k],slp[j,k],P[i])
def p2h(T,slp,P):
g=9.81
R=287.04
H=(R*T/g)*(log(slp/P))
return H
## static stability (buyoncy frequency N2)
# N2, pn = N2(ta,slp,plev,lon,lat)
#inputs: ta = air temperature (Kelvin) (3D [time, lat, lon])
# slp= sea level pressure (hPa) (2D [lat, lon])
# plev= pressure level (hPa) (1D vertical array)
#outputs: N2= static stability (s^-2)
# pn= new pressure level (hPa)
def N2(ta,slp,plev,lon,lat):
np=len(plev)
nlat=len(lat)
nlon=len(lon)
tp=zeros(ta.shape)
h=zeros(ta.shape)
#convert to pt
for i in range(np):
for j in range(nlat):
for k in range(nlon):
tp[i,j,k]=ta[i,j,k]*((slp[j,k]/(plev[i]))**0.286)
h[i,j,k]=p2h(ta[i,j,k],slp[j,k],plev[i])
dtheta=tp[1:,:,:]-tp[:-1,:,:]
theta=(tp[1:,:,:]+tp[:-1,:,:])/2
dz=h[1:,:,:]-h[:-1,:,:]
#hn=h[:-1,:,:]+dz/2
pn=(plev[1:]+plev[:-1])/2
g=9.81
N2=(g/theta)*(dtheta/dz)
return (N2, pn)
def cmap():
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
bottom = cm.get_cmap('YlOrRd', 128)
top = cm.get_cmap('Blues_r', 128)
newcolors = vstack((top(linspace(0, 1, 128)),
bottom(linspace(0, 1, 128))))
newcmp = ListedColormap(newcolors, name='OrangeBlue')
return newcmp
## This function takes two time series (x 1D, y 3D) and output gives y removing the x signal
def deregress(x,y,lon=[],lat=[]):
nlon=len(lon)
nlat=len(lat)
if nlat>1:
y_dr=zeros(y.shape)
y_dr[:]=nan
for i in range(nlat):
for j in range(nlon):
y1=y[i,j,:]
nx=isnan(x)
ny=isnan(y1)
ny[nx==True]=True
ny=ny==False
slope, intercept, r_value, p_value, std_err = stats.linregress(x[ny],y1[ny])
reg=x*slope + intercept
y_dr[i,j,:]=y1-reg
return y_dr
if nlat<1:
y1=y
nx=isnan(x)
ny=isnan(y1)
ny[nx==True]=True
ny=ny==False
slope, intercept, r_value, p_value, std_err = stats.linregress(x[ny],y1[ny])
reg=x*slope + intercept
y_dr=y1-reg
return y_dr
# Area functions
def spheric_dist(lat1,lat2,lon1,lon2):
R=6367442.76
# % Determine proper longitudinal shift.
l=absolute(lon2-lon1)
l[l>=180]=360-l[l>=180]
#l(l>=180)=360-l(l>=180);
# %
# % Convert Decimal degrees to radians.
# %
deg2rad=pi/180
lat1=lat1*deg2rad
lat2=lat2*deg2rad
l=l*deg2rad
# %
# % Compute the distances
# %
dist=R*arcsin(sqrt(((sin(l)*cos(lat2))**2)+(((sin(lat2)*cos(lat1))-(sin(lat1)*cos(lat2)*cos(l)))**2)))
#done
return dist
def get_grid_area(lon_rho,lat_rho):
I, J=lon_rho.shape
lon_u=zeros((I+1,J))
lon_u[1:-1,:]=0.5*(lon_rho[0:-1,:]+lon_rho[1:,:])
lon_u[0,:]=lon_rho[0,:]-0.5*(lon_rho[1,:]-lon_rho[0,:])
lon_u[-1,:]=lon_rho[-1,:]+0.5*(lon_rho[-1,:]-lon_rho[-2,:])
lat_u=zeros((I+1,J))
lat_u[1:-1,:]=0.5*(lat_rho[0:-1,:]+lat_rho[1:,:])
lat_u[0,:]=lat_rho[0,:]-0.5*(lat_rho[1,:]-lat_rho[0,:])
lat_u[-1,:]=lat_rho[-1,:]+0.5*(lat_rho[-1,:]-lat_rho[-2,:])
lon_v=zeros((I,J+1))
lon_v[:,1:-1]=0.5*(lon_rho[:,0:-1]+lon_rho[:,1:])
lon_v[:,0]=lon_rho[:,0]-0.5*(lon_rho[:,1]-lon_rho[:,0])
lon_v[:,-1]=lon_rho[:,-1]+0.5*(lon_rho[:,-1]-lon_rho[:,-2])
lat_v=zeros((I,J+1))
lat_v[:,1:-1]=0.5*(lat_rho[:,0:-1]+lat_rho[:,1:])
lat_v[:,0]=lat_rho[:,0]-0.5*(lat_rho[:,1]-lat_rho[:,0])
lat_v[:,-1]=lat_rho[:,-1]+0.5*(lat_rho[:,-1]-lat_rho[:,-2])
dx_rho=zeros((I,J))
dx_rho=spheric_dist(lat_u[0:-1,:],lat_u[1:,:],lon_u[0:-1,:],lon_u[1:,:])
dy_rho=zeros((I,J))
dy_rho=spheric_dist(lat_v[:,0:-1],lat_v[:,1:], lon_v[:,0:-1],lon_v[:,1:])
A=dy_rho*dx_rho
return (A, dx_rho, dy_rho)
def surface_integral(variable,dx_rho,dy_rho):
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# Calculate the integral of a variable over a surface
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AREA=squeeze(dy_rho)*squeeze(dx_rho)
#calculate for all rho cubes on the surface
VAR=variable.T*AREA;
# Intergrate the rho cubes over the surface
Test=isnan(VAR);
P=nonzero(Test==False);
surface_int=sum(VAR[P]);
return surface_int
def sah_area(psl,lon,lat):
nlon= len(lon)
nlat=len(lat)
psl_mat=zeros(psl.shape)
psl_mat[nonzero(psl>=1020)]=1
psl_mat[nonzero(psl<1020)]=0
# find SAH lonlat
i=squeeze(nonzero((lat>=-62.3340) & (lat<=-0.7000)))
k=squeeze(nonzero((lon>=-60) & (lon<=20)))
psl_a=psl_mat[i[0]:i[-1]+1,k[0]:k[-1]+1]
lat=lat[i]
lon=lon[k]
lat_rho, lon_rho=meshgrid(lat,lon)
A, dx_rho, dy_rho=get_grid_area(lon_rho,lat_rho)
area=surface_integral(psl_a,dx_rho,dy_rho)
return area
def sah_maxslp(psl,lon,lat,time):
nlon= len(lon)
nlat=len(lat)
nt=len(time)
mo=12
yr=nt//mo
# find SAH lonlat
i=squeeze(nonzero((lat>=-62.3340) & (lat<=-0.7000)))
k=squeeze(nonzero((lon>=-60) & (lon<=20)))
psl_a=psl[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
maxpsl=zeros(nt)
for i in range(nt):
maxpsl[i]=nanmax(psl_a[i,:,:])
return maxpsl
def sah_int(psl,lon,lat,time):
nlon= len(lon)
nlat=len(lat)
nt=len(time)
mo=12
yr=nt//mo
# ssn decompose
djf, mam, jja, son=ssn_decompose(psl,lon,lat,time)
psl=reshape(psl,(yr,mo,nlat,nlon))
ann=squeeze(nanmean(psl,1))
# find SAH lonlat
# %Annual: 35 W to 11 E, 38 S to 22 S
# %DJF: 23 W to 8 E, 38 S to 27 S
# %MAM: 27 W to 7 E, 36 S to 26 S
# %JJA: 40 W 8E, 37S-15S
# %SON: 39 W to 14 E, 39 S to 19 S
#DJF
i=squeeze(nonzero((lat>=-38) & (lat<=-27)))
k=squeeze(nonzero((lon>=-23) & (lon<=8)))
djfint=djf[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
djfint=nanmean(nanmean(djfint,2),1)
#MAM
i=squeeze(nonzero((lat>=-36) & (lat<=-26)))
k=squeeze(nonzero((lon>=-27) & (lon<=7)))
mamint=mam[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
mamint=nanmean(nanmean(mamint,2),1)
#JJA
i=squeeze(nonzero((lat>=-37) & (lat<=-15)))
k=squeeze(nonzero((lon>=-40) & (lon<=8)))
jjaint=jja[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
jjaint=nanmean(nanmean(jjaint,2),1)
#SON
i=squeeze(nonzero((lat>=-39) & (lat<=-19)))
k=squeeze(nonzero((lon>=-39) & (lon<=14)))
sonint=djf[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
sonint=nanmean(nanmean(sonint,2),1)
#Ann
i=squeeze(nonzero((lat>=-38) & (lat<=-22)))
k=squeeze(nonzero((lon>=-35) & (lon<=11)))
annint=ann[:,i[0]:i[-1]+1,k[0]:k[-1]+1]
annint=nanmean(nanmean(annint,2),1)
return (djfint, mamint, jjaint, sonint, annint)
def fa_interp(var, lon, lat, new_lons, new_lats,time=1):
nlon=len(new_lons)
nlat=len(new_lats)
shift=len(nonzero(lon>180)[0])
#new_lons, new_lats=meshgrid(new_lons, new_lats)
if time==1:
data_interp=zeros((nlat,nlon))
if shift>1:
fltrn = new_lons >= 180
new_lons = concatenate(((new_lons - 360)[fltrn], new_lons[~fltrn]))
new_lons, new_lats=meshgrid(new_lons, new_lats)
fltr = lon >= 180
lon = concatenate(((lon - 360)[fltr], lon[~fltr]))
data=var[:,:]
data = concatenate((data[:, fltr], data[:, ~fltr]), axis=-1)
data_interp[:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
data_interp = concatenate((data_interp[:, ~fltrn],data_interp[:, fltrn]), axis=-1)
else:
new_lons, new_lats=meshgrid(new_lons, new_lats)
data=var[:,:]
data_interp[:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
else:
nt=len(time)
data_interp=zeros((nt,nlat,nlon))
if shift>1:
fltrn = new_lons >= 180
new_lons = concatenate(((new_lons - 360)[fltrn], new_lons[~fltrn]))
new_lons, new_lats=meshgrid(new_lons, new_lats)
fltr = lon >= 180
lon = concatenate(((lon - 360)[fltr], lon[~fltr]))
for i in range(nt):
data=var[i,:,:]
data = concatenate((data[:, fltr], data[:, ~fltr]), axis=-1)
data_interp[i,:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
data_interp = concatenate((data_interp[:, ~fltrn],data_interp[:, fltrn]), axis=-1)
else:
new_lons, new_lats=meshgrid(new_lons, new_lats)
for i in range(nt):
data=var[i,:,:]
data_interp[i,:,:] = mpl_toolkits.basemap.interp(data, lon, lat, new_lons, new_lats,checkbounds=False, masked=False, order=1)
return data_interp
def test():
print('AOESpy v1 Test')
print('author: Abdullah al Fahad ([email protected])')
print('For Latest update: https://github.com/afahadabdullah/AOESpy')
print('- - - - - - - - - - - - - - - - - - -')
file='/homes/afahad/data/sst_erai_1979_2016.nc'
sst= rnc('sst',file)
lon=rnc('lon',file)
lat=rnc('lat',file)
sst=nanmean(sst,0)
f()
plot(sst,lon,lat, 'Test AOESpy annual mean SST plot from Era-interim data', cmap=cmap())
d()