forked from hanbt/learn_dl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbp.py
executable file
·303 lines (233 loc) · 9.35 KB
/
bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import random
from numpy import *
def sigmoid(inX):
return 1.0 / (1 + exp(-inX))
class Node(object):
def __init__(self, layer_index, node_index):
self.layer_index = layer_index
self.node_index = node_index
self.downstream = []
self.upstream = []
self.output = 0
self.delta = 0
def set_output(self, output):
self.output = output
def append_downstream_connection(self, conn):
self.downstream.append(conn)
def append_upstream_connection(self, conn):
self.upstream.append(conn)
def calc_output(self):
output = reduce(lambda ret, conn: ret + conn.upstream_node.output * conn.weight, self.upstream, 0)
self.output = sigmoid(output)
def calc_hidden_layer_delta(self):
downstream_delta = reduce(
lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
self.downstream, 0.0)
self.delta = self.output * (1 - self.output) * downstream_delta
def calc_output_layer_delta(self, label):
self.delta = self.output * (1 - self.output) * (label - self.output)
def __str__(self):
node_str = '%u-%u: output: %f delta: %f' % (self.layer_index, self.node_index, self.output, self.delta)
downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
upstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.upstream, '')
return node_str + '\n\tdownstream:' + downstream_str + '\n\tupstream:' + upstream_str
class ConstNode(object):
def __init__(self, layer_index, node_index):
self.layer_index = layer_index
self.node_index = node_index
self.downstream = []
self.output = 1
def append_downstream_connection(self, conn):
self.downstream.append(conn)
def calc_hidden_layer_delta(self):
downstream_delta = reduce(
lambda ret, conn: ret + conn.downstream_node.delta * conn.weight,
self.downstream, 0.0)
self.delta = self.output * (1 - self.output) * downstream_delta
def __str__(self):
node_str = '%u-%u: output: 1' % (self.layer_index, self.node_index)
downstream_str = reduce(lambda ret, conn: ret + '\n\t' + str(conn), self.downstream, '')
return node_str + '\n\tdownstream:' + downstream_str
class Layer(object):
def __init__(self, layer_index, node_count):
self.layer_index = layer_index
self.nodes = []
for i in range(node_count):
self.nodes.append(Node(layer_index, i))
self.nodes.append(ConstNode(layer_index, node_count))
def set_output(self, data):
for i in range(len(data)):
self.nodes[i].set_output(data[i])
def calc_output(self):
for node in self.nodes[:-1]:
node.calc_output()
def dump(self):
for node in self.nodes:
print node
class Connection(object):
def __init__(self, upstream_node, downstream_node):
self.upstream_node = upstream_node
self.downstream_node = downstream_node
self.weight = random.uniform(-0.1, 0.1)
self.gradient = 0.0
def calc_gradient(self):
self.gradient = self.downstream_node.delta * self.upstream_node.output
def update_weight(self, rate):
self.calc_gradient()
self.weight += rate * self.gradient
def get_gradient(self):
return self.gradient
def __str__(self):
return '(%u-%u) -> (%u-%u) = %f' % (
self.upstream_node.layer_index,
self.upstream_node.node_index,
self.downstream_node.layer_index,
self.downstream_node.node_index,
self.weight)
class Connections(object):
def __init__(self):
self.connections = []
def add_connection(self, connection):
self.connections.append(connection)
def dump(self):
for conn in self.connections:
print conn
class Network(object):
def __init__(self, layers):
self.connections = Connections()
self.layers = []
layer_count = len(layers)
node_count = 0;
for i in range(layer_count):
self.layers.append(Layer(i, layers[i]))
for layer in range(layer_count - 1):
connections = [Connection(upstream_node, downstream_node)
for upstream_node in self.layers[layer].nodes
for downstream_node in self.layers[layer + 1].nodes[:-1]]
for conn in connections:
self.connections.add_connection(conn)
conn.downstream_node.append_upstream_connection(conn)
conn.upstream_node.append_downstream_connection(conn)
def train(self, labels, data_set, rate, epoch):
for i in range(epoch):
for d in range(len(data_set)):
self.train_one_sample(labels[d], data_set[d], rate)
# print 'sample %d training finished' % d
def train_one_sample(self, label, sample, rate):
self.predict(sample)
self.calc_delta(label)
self.update_weight(rate)
def calc_delta(self, label):
output_nodes = self.layers[-1].nodes
for i in range(len(label)):
output_nodes[i].calc_output_layer_delta(label[i])
for layer in self.layers[-2::-1]:
for node in layer.nodes:
node.calc_hidden_layer_delta()
def update_weight(self, rate):
for layer in self.layers[:-1]:
for node in layer.nodes:
for conn in node.downstream:
conn.update_weight(rate)
def calc_gradient(self):
for layer in self.layers[:-1]:
for node in layer.nodes:
for conn in node.downstream:
conn.calc_gradient()
def get_gradient(self, label, sample):
self.predict(sample)
self.calc_delta(label)
self.calc_gradient()
def predict(self, sample):
self.layers[0].set_output(sample)
for i in range(1, len(self.layers)):
self.layers[i].calc_output()
return map(lambda node: node.output, self.layers[-1].nodes[:-1])
def dump(self):
for layer in self.layers:
layer.dump()
class Normalizer(object):
def __init__(self):
self.mask = [
0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80
]
def norm(self, number):
return map(lambda m: 0.9 if number & m else 0.1, self.mask)
def denorm(self, vec):
binary = map(lambda i: 1 if i > 0.5 else 0, vec)
for i in range(len(self.mask)):
binary[i] = binary[i] * self.mask[i]
return reduce(lambda x,y: x + y, binary)
def mean_square_error(vec1, vec2):
return 0.5 * reduce(lambda a, b: a + b,
map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
zip(vec1, vec2)
)
)
def gradient_check(network, sample_feature, sample_label):
'''
梯度检查
network: 神经网络对象
sample_feature: 样本的特征
sample_label: 样本的标签
'''
# 计算网络误差
network_error = lambda vec1, vec2: \
0.5 * reduce(lambda a, b: a + b,
map(lambda v: (v[0] - v[1]) * (v[0] - v[1]),
zip(vec1, vec2)))
# 获取网络在当前样本下每个连接的梯度
network.get_gradient(sample_feature, sample_label)
# 对每个权重做梯度检查
for conn in network.connections.connections:
# 获取指定连接的梯度
actual_gradient = conn.get_gradient()
# 增加一个很小的值,计算网络的误差
epsilon = 0.0001
conn.weight += epsilon
error1 = network_error(network.predict(sample_feature), sample_label)
# 减去一个很小的值,计算网络的误差
conn.weight -= 2 * epsilon # 刚才加过了一次,因此这里需要减去2倍
error2 = network_error(network.predict(sample_feature), sample_label)
# 根据式6计算期望的梯度值
expected_gradient = (error2 - error1) / (2 * epsilon)
# 打印
print 'expected gradient: \t%f\nactual gradient: \t%f' % (
expected_gradient, actual_gradient)
def train_data_set():
normalizer = Normalizer()
data_set = []
labels = []
for i in range(0, 256, 8):
n = normalizer.norm(int(random.uniform(0, 256)))
data_set.append(n)
labels.append(n)
return labels, data_set
def train(network):
labels, data_set = train_data_set()
network.train(labels, data_set, 0.3, 50)
def test(network, data):
normalizer = Normalizer()
norm_data = normalizer.norm(data)
predict_data = network.predict(norm_data)
print '\ttestdata(%u)\tpredict(%u)' % (
data, normalizer.denorm(predict_data))
def correct_ratio(network):
normalizer = Normalizer()
correct = 0.0;
for i in range(256):
if normalizer.denorm(network.predict(normalizer.norm(i))) == i:
correct += 1.0
print 'correct_ratio: %.2f%%' % (correct / 256 * 100)
def gradient_check_test():
net = Network([2, 2, 2])
sample_feature = [0.9, 0.1]
sample_label = [0.9, 0.1]
gradient_check(net, sample_feature, sample_label)
if __name__ == '__main__':
net = Network([8, 3, 8])
train(net)
net.dump()
correct_ratio(net)