-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathquicknat.py
119 lines (102 loc) · 4.1 KB
/
quicknat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""Quicknat architecture"""
import numpy as np
import torch
import torch.nn as nn
from nn_common_modules import modules as sm
from squeeze_and_excitation import squeeze_and_excitation as se
class QuickNat(nn.Module):
"""
A PyTorch implementation of QuickNAT
"""
def __init__(self, params):
"""
:param params: {'num_channels':1,
'num_filters':64,
'kernel_h':5,
'kernel_w':5,
'stride_conv':1,
'pool':2,
'stride_pool':2,
'num_classes':28
'se_block': False,
'drop_out':0.2}
"""
super(QuickNat, self).__init__()
print(se.SELayer(params['se_block']))
self.encode1 = sm.EncoderBlock(params, se_block_type=params['se_block'])
params['num_channels'] = params['num_filters']
self.encode2 = sm.EncoderBlock(params, se_block_type=params['se_block'])
self.encode3 = sm.EncoderBlock(params, se_block_type=params['se_block'])
self.encode4 = sm.EncoderBlock(params, se_block_type=params['se_block'])
self.bottleneck = sm.DenseBlock(params, se_block_type=params['se_block'])
params['num_channels'] = params['num_filters'] * 2
self.decode1 = sm.DecoderBlock(params, se_block_type=params['se_block'])
self.decode2 = sm.DecoderBlock(params, se_block_type=params['se_block'])
self.decode3 = sm.DecoderBlock(params, se_block_type=params['se_block'])
self.decode4 = sm.DecoderBlock(params, se_block_type=params['se_block'])
params['num_channels'] = params['num_filters']
self.classifier = sm.ClassifierBlock(params)
def forward(self, input):
"""
:param input: X
:return: probabiliy map
"""
e1, out1, ind1 = self.encode1.forward(input)
e2, out2, ind2 = self.encode2.forward(e1)
e3, out3, ind3 = self.encode3.forward(e2)
e4, out4, ind4 = self.encode4.forward(e3)
bn = self.bottleneck.forward(e4)
d4 = self.decode4.forward(bn, out4, ind4)
d3 = self.decode1.forward(d4, out3, ind3)
d2 = self.decode2.forward(d3, out2, ind2)
d1 = self.decode3.forward(d2, out1, ind1)
prob = self.classifier.forward(d1)
return prob
def enable_test_dropout(self):
"""
Enables test time drop out for uncertainity
:return:
"""
attr_dict = self.__dict__['_modules']
for i in range(1, 5):
encode_block, decode_block = attr_dict['encode' + str(i)], attr_dict['decode' + str(i)]
encode_block.drop_out = encode_block.drop_out.apply(nn.Module.train)
decode_block.drop_out = decode_block.drop_out.apply(nn.Module.train)
@property
def is_cuda(self):
"""
Check if model parameters are allocated on the GPU.
"""
return next(self.parameters()).is_cuda
def save(self, path):
"""
Save model with its parameters to the given path. Conventionally the
path should end with '*.model'.
Inputs:
- path: path string
"""
print('Saving model... %s' % path)
torch.save(self, path)
def predict(self, X, device=0, enable_dropout=False, out_prob=False):
"""
Predicts the outout after the model is trained.
Inputs:
- X: Volume to be predicted
"""
self.eval()
if type(X) is np.ndarray:
X = torch.tensor(X, requires_grad=False).type(torch.FloatTensor).cuda(device, non_blocking=True)
elif type(X) is torch.Tensor and not X.is_cuda:
X = X.type(torch.FloatTensor).cuda(device, non_blocking=True)
if enable_dropout:
self.enable_test_dropout()
with torch.no_grad():
out = self.forward(X)
if out_prob:
return out
else:
max_val, idx = torch.max(out, 1)
idx = idx.data.cpu().numpy()
prediction = np.squeeze(idx)
del X, out, idx, max_val
return prediction