-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
88 lines (65 loc) · 3.86 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import io
import base64
from diffusers import DiffusionPipeline
from transformers import pipeline
import gradio as gr
# text summarization
get_completion_summarizer = pipeline("summarization", model = 'sshleifer/distilbart-cnn-12-6')
def summarize(input):
output = get_completion_summarizer(input)
return output[0]['summary_text']
# NER
def merge_tokens(tokens):
merged_tokens = []
for token in tokens:
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
# If current token continues the entity of the last one, merge them
last_token = merged_tokens[-1]
last_token['word'] += token['word'].replace('##', '')
last_token['end'] = token['end']
last_token['score'] = (last_token['score'] + token['score']) / 2
else:
# Otherwise, add the token to the list
merged_tokens.append(token)
return merged_tokens
get_completion_ner = pipeline("ner", model="dslim/bert-base-NER")
def ner(input):
output = get_completion_ner(input)
merged_tokens = merge_tokens(output)
return {"text": input, "entities": merged_tokens}
# image captioning
get_completion_captioning = pipeline("image-to-text")
def image_to_base64_str(pil_image):
byte_arr = io.BytesIO()
pil_image.save(byte_arr, format='PNG')
byte_arr = byte_arr.getvalue()
return str(base64.b64encode(byte_arr).decode('utf-8'))
def captioner(image):
base64_image = image_to_base64_str(image)
result = get_completion_captioning(base64_image)
return result[0]['generated_text']
# build tabs in interface
io1 = gr.Interface(fn=summarize,
inputs=[gr.Textbox(label="Text to summarize", lines=6)],
outputs=[gr.Textbox(label="Result", lines=3)],
title="Text summarization with distilbart-cnn",
description="Summarize any text using the `shleifer/distilbart-cnn-12-6` model under the hood!"
)
io2 = gr.Interface(fn=ner,
inputs=[gr.Textbox(label="Text to find entities", lines=2)],
outputs=[gr.HighlightedText(label="Text with entities")],
title="NER with dslim/bert-base-NER",
description="Find entities using the `dslim/bert-base-NER` model under the hood!",
allow_flagging="never",
examples=["My name is Andrew, I'm building DeeplearningAI and I live in California", "My name is Poli, I live in Vienna and work at HuggingFace", "The World Health Organization (WHO)[1] is a specialized agency of the United Nations responsible for international public health.[2] The WHO Constitution states its main objective as 'the attainment by all peoples of the highest possible level of health'.[3] Headquartered in Geneva, Switzerland, it has six regional offices and 150 field offices worldwide. The WHO was established on 7 April 1948.[4][5] The first meeting of the World Health Assembly (WHA), the agency's governing body, took place on 24 July of that year. The WHO incorporated the assets, personnel, and duties of the League of Nations' Health Organization and the Office International d'Hygiène Publique, including the International Classification of Diseases (ICD).[6] Its work began in earnest in 1951 after a significant infusion of financial and technical resources.[7]"])
io3 = gr.Interface(fn=captioner,
inputs=[gr.Image(label="Upload image", type="pil")],
outputs=[gr.Textbox(label="Caption")],
title="Image Captioning with BLIP",
description="Caption any image using the BLIP model",
allow_flagging="never",
)
gr.TabbedInterface(
[io1, io2, io3], ["Text Summarization", "Named Entity Recognition", "Image Captioning"]
).launch()