-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest_model.py
138 lines (93 loc) · 4.69 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2020 by Andrey Ignatov. All Rights Reserved.
from scipy import misc
import numpy as np
import tensorflow as tf
import sys
import os
tf.compat.v1.disable_v2_behavior()
from load_dataset import load_input_image
from model import PyNET
import utils
import sys
LEVEL, restore_iter, dataset_dir, use_gpu, orig_model = utils.process_test_model_args(sys.argv)
DSLR_SCALE = float(1) / (2 ** (LEVEL - 2))
# Disable gpu if specified
config = tf.compat.v1.ConfigProto(device_count={'GPU': 0}) if use_gpu == "false" else None
with tf.compat.v1.Session(config=config) as sess:
# Placeholders for test data
x_ = tf.compat.v1.placeholder(tf.float32, [1, None, None, 4])
y_ = tf.compat.v1.placeholder(tf.float32, [1, None, None, 3])
# generate bokeh image
output_l1, output_l2, output_l3, output_l4, output_l5, output_l6, output_l7 = \
PyNET(x_, instance_norm=True, instance_norm_level_1=False)
if LEVEL < 1:
print("Lvel number cannot be less than 1. Aborting.")
sys.exit()
if LEVEL > 3:
print("Larger images are needed for computing PSNR / SSIM scores. Aborting.")
sys.exit()
if LEVEL == 3:
bokeh_img = output_l3
if LEVEL == 2:
bokeh_img = output_l2
if LEVEL == 1:
bokeh_img = output_l1
bokeh_img = tf.clip_by_value(bokeh_img, 0.0, 1.0)
# Removing the boundary (32 px) from the resulting / target images
crop_height_ = tf.compat.v1.placeholder(tf.int32)
crop_width_ = tf.compat.v1.placeholder(tf.int32)
bokeh_img_cropped = tf.image.crop_to_bounding_box(bokeh_img, 32, 32, crop_height_, crop_width_)
y_cropped = tf.image.crop_to_bounding_box(y_, 32, 32, crop_height_, crop_width_)
# Losses
loss_psnr = tf.reduce_mean(tf.image.psnr(bokeh_img_cropped, y_cropped, 1.0))
loss_ssim = tf.reduce_mean(tf.image.ssim(bokeh_img_cropped, y_cropped, 1.0))
loss_ms_ssim = tf.reduce_mean(tf.image.ssim_multiscale(bokeh_img_cropped, y_cropped, 1.0))
# Loading pre-trained model
saver = tf.compat.v1.train.Saver()
if orig_model == "true":
saver.restore(sess, "models/original/pynet_bokeh_level_0")
else:
saver.restore(sess, "models/pynet_level_" + str(LEVEL) + "_iteration_" + str(restore_iter) + ".ckpt")
# -------------------------------------------------
# Part 1: Processing sample full-resolution images
print("Generating sample visual results")
sample_images_dir = "visual_samples/images/"
sample_depth_maps_dir = "visual_samples/depth_maps/"
sample_images = [f for f in os.listdir(sample_images_dir) if os.path.isfile(sample_images_dir + f)]
for photo in sample_images:
# Load image
I = load_input_image(sample_images_dir, sample_depth_maps_dir, photo)
# Run inference
bokeh_tensor = sess.run(bokeh_img, feed_dict={x_: I})
bokeh_image = np.reshape(bokeh_tensor, [int(I.shape[1] * DSLR_SCALE), int(I.shape[2] * DSLR_SCALE), 3])
# Save the results as .png images
photo_name = photo.rsplit(".", 1)[0]
misc.imsave("results/full-resolution/" + photo_name + "_level_" + str(LEVEL) +
"_iteration_" + str(restore_iter) + ".png", bokeh_image)
# ------------------------------------------------------------------------
# Part 1: Compute PSNR / SSIM scores on the test part of the EBB! dataset
print("Performing quantitative evaluation")
test_directory_orig = dataset_dir + 'test/original/'
test_directory_orig_depth = dataset_dir + 'test/original_depth/'
test_directory_blur = dataset_dir + 'test/bokeh/'
test_images = [f for f in os.listdir(test_directory_orig) if os.path.isfile(os.path.join(test_directory_orig, f))]
loss_psnr_ = 0.0
loss_ssim_ = 0.0
loss_msssim_ = 0.0
test_size = len(test_images)
iter_ = 0
for photo in test_images:
# Load image
I = load_input_image(test_directory_orig, test_directory_orig_depth, photo)
Y = misc.imread(test_directory_blur + photo) / 255.0
Y = np.float32(misc.imresize(Y, DSLR_SCALE / 2, interp='bicubic')) / 255.0
Y = np.reshape(Y, [1, Y.shape[0], Y.shape[1], 3])
loss_psnr_temp, loss_ssim_temp, loss_msssim_temp = sess.run([loss_psnr, loss_ssim, loss_ms_ssim],
feed_dict={x_: I, y_: Y, crop_height_: Y.shape[1] - 64, crop_width_: Y.shape[2] - 64})
print(photo, iter_, loss_psnr_temp, loss_ssim_temp, loss_msssim_temp)
loss_psnr_ += loss_psnr_temp / test_size
loss_ssim_ += loss_ssim_temp / test_size
loss_msssim_ += loss_msssim_temp / test_size
iter_ += 1
output_logs = "PSNR: %.4g, SSIM: %.4g, MS-SSIM: %.4g\n" % (loss_psnr_, loss_ssim_, loss_msssim_)
print(output_logs)