We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I used this command python train.py --dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 --load_in_mem --num_G_accumulations 8 --num_D_accumulations 8 --num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 --G_attn 64 --D_attn 64 --G_nl inplace_relu --D_nl inplace_relu --SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 --G_ortho 0.0 --G_shared --G_init ortho --D_init ortho --hier --dim_z 120 --shared_dim 128 --G_eval_mode --G_ch 96 --D_ch 96 --ema --use_ema --ema_start 20000 --test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 --use_multiepoch_sampler --data_root '../../datasets/imagenet_2012/ILSVRC/Data/CLS-LOC'
python train.py --dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 --load_in_mem --num_G_accumulations 8 --num_D_accumulations 8 --num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 --G_attn 64 --D_attn 64 --G_nl inplace_relu --D_nl inplace_relu --SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 --G_ortho 0.0 --G_shared --G_init ortho --D_init ortho --hier --dim_z 120 --shared_dim 128 --G_eval_mode --G_ch 96 --D_ch 96 --ema --use_ema --ema_start 20000 --test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 --use_multiepoch_sampler --data_root '../../datasets/imagenet_2012/ILSVRC/Data/CLS-LOC'
and the following is my terminal dump. Clearly, the FID is not converging
{"itr": 2000, "IS_mean": 1.0304653644561768, "IS_std": 0.0014261072501540184, "FID": 394.4552307128906, "_stamp": 1643744125.9338467} {"itr": 4000, "IS_mean": 1.1188709735870361, "IS_std": 0.001007376005873084, "FID": 441.09441643261874, "_stamp": 1643771589.7811866} {"itr": 6000, "IS_mean": 1.1406240463256836, "IS_std": 0.002446718281134963, "FID": 336.57989501953125, "_stamp": 1643799135.0760667} {"itr": 8000, "IS_mean": 1.0835497379302979, "IS_std": 0.002129267668351531, "FID": 319.775146484375, "_stamp": 1643826470.6842303} {"itr": 10000, "IS_mean": 1.1007851362228394, "IS_std": 0.0018776928773149848, "FID": 378.22900390625, "_stamp": 1643853959.790462} {"itr": 12000, "IS_mean": 1.2996935844421387, "IS_std": 0.004443394020199776, "FID": 346.31591796875, "_stamp": 1643881555.2079446} {"itr": 14000, "IS_mean": 1.234755039215088, "IS_std": 0.0016474281437695026, "FID": 302.0063781738281, "_stamp": 1643908870.9288065} {"itr": 16000, "IS_mean": 1.0296392440795898, "IS_std": 0.0007893913425505161, "FID": 345.8172302246094, "_stamp": 1643936364.6364923} {"itr": 18000, "IS_mean": 1.1954978704452515, "IS_std": 0.0018338472582399845, "FID": 342.95867919921875, "_stamp": 1643964062.272396}
Any pointer to fix this? I ran this on a 8V100 - 32GB machine
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I used this command
python train.py --dataset I128_hdf5 --parallel --shuffle --num_workers 8 --batch_size 256 --load_in_mem --num_G_accumulations 8 --num_D_accumulations 8 --num_D_steps 1 --G_lr 1e-4 --D_lr 4e-4 --D_B2 0.999 --G_B2 0.999 --G_attn 64 --D_attn 64 --G_nl inplace_relu --D_nl inplace_relu --SN_eps 1e-6 --BN_eps 1e-5 --adam_eps 1e-6 --G_ortho 0.0 --G_shared --G_init ortho --D_init ortho --hier --dim_z 120 --shared_dim 128 --G_eval_mode --G_ch 96 --D_ch 96 --ema --use_ema --ema_start 20000 --test_every 2000 --save_every 1000 --num_best_copies 5 --num_save_copies 2 --seed 0 --use_multiepoch_sampler --data_root '../../datasets/imagenet_2012/ILSVRC/Data/CLS-LOC'
and the following is my terminal dump. Clearly, the FID is not converging
Any pointer to fix this? I ran this on a 8V100 - 32GB machine
The text was updated successfully, but these errors were encountered: