This repository has been archived by the owner on Feb 10, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
228 lines (171 loc) · 7.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Training loop."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pdb
import shutil
import sys
import traceback # pylint:disable=g-import-not-at-top
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
from stacked_capsule_autoencoders.capsules.configs import data_config
from stacked_capsule_autoencoders.capsules.configs import model_config
from stacked_capsule_autoencoders.capsules.train import create_hooks
from stacked_capsule_autoencoders.capsules.train import tools
flags.DEFINE_string('dataset', 'mnist', 'Choose from: {mnist, constellation.}')
flags.DEFINE_string('model', 'scae', 'Choose from {scae, constellation}.')
flags.DEFINE_string('name', None, '')
flags.mark_flag_as_required('name')
flags.DEFINE_string('logdir', 'stacked_capsule_autoencoders/checkpoints/{name}',
'Log and checkpoint directory for the experiment.')
flags.DEFINE_float('grad_value_clip', 0., '')
flags.DEFINE_float('grad_norm_clip', 0., '')
flags.DEFINE_float('ema', .9, 'Exponential moving average weight for smoothing '
'reported results.')
flags.DEFINE_integer('run_updates_every', 10, '')
flags.DEFINE_boolean('global_ema_update', True, '')
flags.DEFINE_integer('max_train_steps', int(3e5), '')
flags.DEFINE_integer('snapshot_secs', 3600, '')
flags.DEFINE_integer('snapshot_steps', 0, '')
flags.DEFINE_integer('snapshots_to_keep', 5, '')
flags.DEFINE_integer('summary_steps', 500, '')
flags.DEFINE_integer('report_loss_steps', 500, '')
flags.DEFINE_boolean('plot', False, 'Produces intermediate results plots '
'if True.')
flags.DEFINE_integer('plot_steps', 1000, '')
flags.DEFINE_boolean('overwrite', False, 'Overwrites any existing run of the '
'same name if True; otherwise it tries to restore the '
'model if a checkpoint exists.')
flags.DEFINE_boolean('check_numerics', False, 'Adds check numerics ops.')
def main(_=None):
FLAGS = flags.FLAGS # pylint: disable=invalid-name,redefined-outer-name
config = FLAGS
FLAGS.__dict__['config'] = config
FLAGS.logdir = FLAGS.logdir.format(name=FLAGS.name)
logdir = FLAGS.logdir
logging.info('logdir: %s', logdir)
if os.path.exists(logdir) and FLAGS.overwrite:
logging.info('"overwrite" is set to True. Deleting logdir at "%s".', logdir)
shutil.rmtree(logdir)
# Build the graph
with tf.Graph().as_default():
model_dict = model_config.get(FLAGS)
data_dict = data_config.get(FLAGS)
lr = model_dict.lr
opt = model_dict.opt
model = model_dict.model
trainset = data_dict.trainset
validset = data_dict.validset
lr = tf.convert_to_tensor(lr)
tf.summary.scalar('learning_rate', lr)
# Training setup
global_step = tf.train.get_or_create_global_step()
# Optimisation target
validset = tools.maybe_convert_dataset(validset)
trainset = tools.maybe_convert_dataset(trainset)
target, gvs = model.make_target(trainset, opt)
if gvs is None:
gvs = opt.compute_gradients(target)
suppress_inf_and_nans = (config.grad_value_clip > 0
or config.grad_norm_clip > 0)
report = tools.gradient_summaries(gvs, suppress_inf_and_nans)
report['target'] = target
valid_report = dict()
gvs = tools.clip_gradients(gvs, value_clip=config.grad_value_clip,
norm_clip=config.grad_norm_clip)
try:
report.update(model.make_report(trainset))
valid_report.update(model.make_report(validset))
except AttributeError:
logging.warning('Model %s has no "make_report" method.', str(model))
raise
plot_dict, plot_params = None, None
if config.plot:
try:
plot_dict, plot_params = model.make_plot(trainset, 'train')
valid_plot, valid_params = model.make_plot(validset, 'valid')
plot_dict.update(valid_plot)
if plot_params is not None:
plot_params.update(valid_params)
except AttributeError:
logging.warning('Model %s has no "make_plot" method.', str(model))
report = tools.scalar_logs(report, config.ema, 'train',
global_update=config.global_ema_update)
report['lr'] = lr
valid_report = tools.scalar_logs(
valid_report, config.ema, 'valid',
global_update=config.global_ema_update)
reports_keys = sorted(report.keys())
def _format(k):
if k in ('lr', 'learning_rate'):
return '.2E'
return '.3f'
report_template = ', '.join(['{}: {}{}:{}{}'.format(
k, '{', k, _format(k), '}') for k in reports_keys])
logging.info('Trainable variables:')
tools.log_variables_by_scope()
# inspect gradients
for g, v in gvs:
if g is None:
logging.warning('No gradient for variable: %s.', v.name)
tools.log_num_params()
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if FLAGS.check_numerics:
update_ops += [tf.add_check_numerics_ops()]
with tf.control_dependencies(update_ops):
train_step = opt.apply_gradients(gvs, global_step=global_step)
sess_config = tf.ConfigProto()
sess_config.gpu_options.allow_growth = True
with tf.train.SingularMonitoredSession(
hooks=create_hooks(FLAGS, plot_dict, plot_params),
checkpoint_dir=logdir, config=sess_config) as sess:
train_itr, _ = sess.run([global_step, update_ops])
train_tensors = [global_step, train_step]
report_tensors = [report, valid_report]
all_tensors = report_tensors + train_tensors
while train_itr < config.max_train_steps:
if train_itr % config.report_loss_steps == 0:
report_vals, valid_report_vals, train_itr, _ = sess.run(all_tensors)
logging.info('')
logging.info('train:')
logging.info('#%s: %s', train_itr,
report_template.format(**report_vals))
logging.info('valid:')
valid_logs = dict(report_vals)
valid_logs.update(valid_report_vals)
logging.info('#%s: %s', train_itr,
report_template.format(**valid_logs))
vals_to_check = list(report_vals.values())
if (np.isnan(vals_to_check).any()
or np.isnan(vals_to_check).any()):
logging.fatal('NaN in reports: %s; breaking...',
report_template.format(**report_vals))
else:
train_itr, _ = sess.run(train_tensors)
if __name__ == '__main__':
try:
logging.set_verbosity(logging.INFO)
tf.app.run()
except Exception as err: # pylint: disable=broad-except
FLAGS = flags.FLAGS
last_traceback = sys.exc_info()[2]
traceback.print_tb(last_traceback)
print(err)
pdb.post_mortem(last_traceback)