forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCPUGeneratorImpl.cpp
353 lines (311 loc) · 11.8 KB
/
CPUGeneratorImpl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/Utils.h>
#include <ATen/core/MT19937RNGEngine.h>
#include <c10/util/MathConstants.h>
#include <algorithm>
namespace at {
namespace detail {
/**
* CPUGeneratorImplStateLegacy is a POD class needed for memcpys
* in torch.get_rng_state() and torch.set_rng_state().
* It is a legacy class and even though it is replaced with
* at::CPUGeneratorImpl, we need this class and some of its fields
* to support backward compatibility on loading checkpoints.
*/
struct CPUGeneratorImplStateLegacy {
/* The initial seed. */
uint64_t the_initial_seed;
int left; /* = 1; */
int seeded; /* = 0; */
uint64_t next;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
uint64_t state[at::MERSENNE_STATE_N]; /* the array for the state vector */
/********************************/
/* For normal distribution */
double normal_x;
double normal_y;
double normal_rho;
int normal_is_valid; /* = 0; */
};
/**
* CPUGeneratorImplState is a POD class containing
* new data introduced in at::CPUGeneratorImpl and the legacy state. It is used
* as a helper for torch.get_rng_state() and torch.set_rng_state()
* functions.
*/
struct CPUGeneratorImplState {
CPUGeneratorImplStateLegacy legacy_pod;
float next_float_normal_sample;
bool is_next_float_normal_sample_valid;
};
/**
* PyTorch maintains a collection of default generators that get
* initialized once. The purpose of these default generators is to
* maintain a global running state of the pseudo random number generation,
* when a user does not explicitly mention any generator.
* getDefaultCPUGenerator gets the default generator for a particular
* device.
*/
const Generator& getDefaultCPUGenerator() {
static auto default_gen_cpu = createCPUGenerator(c10::detail::getNonDeterministicRandom());
return default_gen_cpu;
}
/**
* Utility to create a CPUGeneratorImpl. Returns a shared_ptr
*/
Generator createCPUGenerator(uint64_t seed_val) {
return make_generator<CPUGeneratorImpl>(seed_val);
}
/**
* Helper function to concatenate two 32 bit unsigned int
* and return them as a 64 bit unsigned int
*/
inline uint64_t make64BitsFrom32Bits(uint32_t hi, uint32_t lo) {
return (static_cast<uint64_t>(hi) << 32) | lo;
}
} // namespace detail
/**
* CPUGeneratorImpl class implementation
*/
CPUGeneratorImpl::CPUGeneratorImpl(uint64_t seed_in)
: c10::GeneratorImpl{Device(DeviceType::CPU), DispatchKeySet(c10::DispatchKey::CPU)},
engine_{seed_in},
next_float_normal_sample_{std::optional<float>()},
next_double_normal_sample_{std::optional<double>()} { }
/**
* Manually seeds the engine with the seed input
* See Note [Acquire lock when using random generators]
*/
void CPUGeneratorImpl::set_current_seed(uint64_t seed) {
next_float_normal_sample_.reset();
next_double_normal_sample_.reset();
engine_ = mt19937(seed);
}
/**
* Sets the offset of RNG state.
* See Note [Acquire lock when using random generators]
*/
void CPUGeneratorImpl::set_offset(uint64_t offset [[maybe_unused]]) {
TORCH_CHECK(false, "CPU Generator does not use offset");
}
/**
* Gets the current offset of CPUGeneratorImpl.
*/
uint64_t CPUGeneratorImpl::get_offset() const {
TORCH_CHECK(false, "CPU Generator does not use offset");
}
/**
* Gets the current seed of CPUGeneratorImpl.
*/
uint64_t CPUGeneratorImpl::current_seed() const {
return engine_.seed();
}
/**
* Gets a nondeterministic random number from /dev/urandom or time,
* seeds the CPUGeneratorImpl with it and then returns that number.
*
* FIXME: You can move this function to Generator.cpp if the algorithm
* in getNonDeterministicRandom is unified for both CPU and CUDA
*/
uint64_t CPUGeneratorImpl::seed() {
auto random = c10::detail::getNonDeterministicRandom();
this->set_current_seed(random);
return random;
}
/**
* Sets the internal state of CPUGeneratorImpl. The new internal state
* must be a strided CPU byte tensor and of the same size as either
* CPUGeneratorImplStateLegacy (for legacy CPU generator state) or
* CPUGeneratorImplState (for new state).
*
* FIXME: Remove support of the legacy state in the future?
*/
void CPUGeneratorImpl::set_state(const c10::TensorImpl& new_state) {
using detail::CPUGeneratorImplState;
using detail::CPUGeneratorImplStateLegacy;
static_assert(std::is_standard_layout_v<CPUGeneratorImplStateLegacy>, "CPUGeneratorImplStateLegacy is not a PODType");
static_assert(std::is_standard_layout_v<CPUGeneratorImplState>, "CPUGeneratorImplState is not a PODType");
static const size_t size_legacy = sizeof(CPUGeneratorImplStateLegacy);
static const size_t size_current = sizeof(CPUGeneratorImplState);
static_assert(size_legacy != size_current, "CPUGeneratorImplStateLegacy and CPUGeneratorImplState can't be of the same size");
detail::check_rng_state(new_state);
at::mt19937 engine;
auto float_normal_sample = std::optional<float>();
auto double_normal_sample = std::optional<double>();
// Construct the state of at::CPUGeneratorImpl based on input byte tensor size.
CPUGeneratorImplStateLegacy* legacy_pod{nullptr};
auto new_state_size = new_state.numel();
if (new_state_size == size_legacy) {
legacy_pod = (CPUGeneratorImplStateLegacy*)new_state.data();
// Note that in CPUGeneratorImplStateLegacy, we didn't have float version
// of normal sample and hence we leave the std::optional<float> as is
// Update next_double_normal_sample.
// Note that CPUGeneratorImplStateLegacy stores two uniform values (normal_x, normal_y)
// and a rho value (normal_rho). These three values were redundant and in the new
// DistributionsHelper.h, we store the actual extra normal sample, rather than three
// intermediate values.
if (legacy_pod->normal_is_valid) {
auto r = legacy_pod->normal_rho;
auto theta = 2.0 * c10::pi<double> * legacy_pod->normal_x;
// we return the sin version of the normal sample when in caching mode
double_normal_sample = std::optional<double>(r * ::sin(theta));
}
} else if (new_state_size == size_current) {
auto rng_state = (CPUGeneratorImplState*)new_state.data();
legacy_pod = &rng_state->legacy_pod;
// update next_float_normal_sample
if (rng_state->is_next_float_normal_sample_valid) {
float_normal_sample = std::optional<float>(rng_state->next_float_normal_sample);
}
// Update next_double_normal_sample.
// Note that in getRNGState, we now return the actual normal sample in normal_y
// and if it's valid in normal_is_valid. The redundant normal_x and normal_rho
// are squashed to 0.0.
if (legacy_pod->normal_is_valid) {
double_normal_sample = std::optional<double>(legacy_pod->normal_y);
}
} else {
AT_ERROR("Expected either a CPUGeneratorImplStateLegacy of size ", size_legacy,
" or a CPUGeneratorImplState of size ", size_current,
" but found the input RNG state size to be ", new_state_size);
}
// construct engine_
// Note that CPUGeneratorImplStateLegacy stored a state array of 64 bit uints, whereas in our
// redefined mt19937, we have changed to a state array of 32 bit uints. Hence, we are
// doing a std::copy.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
at::mt19937_data_pod rng_data;
std::copy(std::begin(legacy_pod->state), std::end(legacy_pod->state), rng_data.state_.begin());
rng_data.seed_ = legacy_pod->the_initial_seed;
rng_data.left_ = legacy_pod->left;
rng_data.seeded_ = legacy_pod->seeded;
rng_data.next_ = static_cast<uint32_t>(legacy_pod->next);
engine.set_data(rng_data);
TORCH_CHECK(engine.is_valid(), "Invalid mt19937 state");
this->engine_ = engine;
this->next_float_normal_sample_ = float_normal_sample;
this->next_double_normal_sample_ = double_normal_sample;
}
/**
* Gets the current internal state of CPUGeneratorImpl. The internal
* state is returned as a CPU byte tensor.
*/
c10::intrusive_ptr<c10::TensorImpl> CPUGeneratorImpl::get_state() const {
using detail::CPUGeneratorImplState;
static const size_t size = sizeof(CPUGeneratorImplState);
static_assert(std::is_standard_layout_v<CPUGeneratorImplState>, "CPUGeneratorImplState is not a PODType");
auto state_tensor = at::detail::empty_cpu({(int64_t)size}, ScalarType::Byte, std::nullopt, std::nullopt, std::nullopt, std::nullopt);
auto rng_state = state_tensor.data_ptr();
// accumulate generator data to be copied into byte tensor
auto accum_state = std::make_unique<CPUGeneratorImplState>();
auto rng_data = this->engine_.data();
accum_state->legacy_pod.the_initial_seed = rng_data.seed_;
accum_state->legacy_pod.left = rng_data.left_;
accum_state->legacy_pod.seeded = rng_data.seeded_;
accum_state->legacy_pod.next = rng_data.next_;
std::copy(rng_data.state_.begin(), rng_data.state_.end(), std::begin(accum_state->legacy_pod.state));
accum_state->legacy_pod.normal_x = 0.0; // we don't use it anymore and this is just a dummy
accum_state->legacy_pod.normal_rho = 0.0; // we don't use it anymore and this is just a dummy
accum_state->legacy_pod.normal_is_valid = false;
accum_state->legacy_pod.normal_y = 0.0;
accum_state->next_float_normal_sample = 0.0f;
accum_state->is_next_float_normal_sample_valid = false;
if (this->next_double_normal_sample_) {
accum_state->legacy_pod.normal_is_valid = true;
accum_state->legacy_pod.normal_y = *(this->next_double_normal_sample_);
}
if (this->next_float_normal_sample_) {
accum_state->is_next_float_normal_sample_valid = true;
accum_state->next_float_normal_sample = *(this->next_float_normal_sample_);
}
memcpy(rng_state, accum_state.get(), size);
return state_tensor.getIntrusivePtr();
}
/**
* Gets the DeviceType of CPUGeneratorImpl.
* Used for type checking during run time.
*/
DeviceType CPUGeneratorImpl::device_type() {
return DeviceType::CPU;
}
/**
* Gets a random 32 bit unsigned integer from the engine
*
* See Note [Acquire lock when using random generators]
*/
uint32_t CPUGeneratorImpl::random() {
return engine_();
}
/**
* Gets a random 64 bit unsigned integer from the engine
*
* See Note [Acquire lock when using random generators]
*/
uint64_t CPUGeneratorImpl::random64() {
uint32_t random1 = engine_();
uint32_t random2 = engine_();
return detail::make64BitsFrom32Bits(random1, random2);
}
/**
* Get the cached normal random in float
*/
std::optional<float> CPUGeneratorImpl::next_float_normal_sample() {
return next_float_normal_sample_;
}
/**
* Get the cached normal random in double
*/
std::optional<double> CPUGeneratorImpl::next_double_normal_sample() {
return next_double_normal_sample_;
}
/**
* Cache normal random in float
*
* See Note [Acquire lock when using random generators]
*/
void CPUGeneratorImpl::set_next_float_normal_sample(std::optional<float> randn) {
next_float_normal_sample_ = randn;
}
/**
* Cache normal random in double
*
* See Note [Acquire lock when using random generators]
*/
void CPUGeneratorImpl::set_next_double_normal_sample(std::optional<double> randn) {
next_double_normal_sample_ = randn;
}
/**
* Get the engine of the CPUGeneratorImpl
*/
at::mt19937 CPUGeneratorImpl::engine() {
return engine_;
}
/**
* Set the engine of the CPUGeneratorImpl
*
* See Note [Acquire lock when using random generators]
*/
void CPUGeneratorImpl::set_engine(at::mt19937 engine) {
engine_ = engine;
}
/**
* Public clone method implementation
*
* See Note [Acquire lock when using random generators]
*/
std::shared_ptr<CPUGeneratorImpl> CPUGeneratorImpl::clone() const {
return std::shared_ptr<CPUGeneratorImpl>(this->clone_impl());
}
/**
* Private clone method implementation
*
* See Note [Acquire lock when using random generators]
*/
CPUGeneratorImpl* CPUGeneratorImpl::clone_impl() const {
auto gen = new CPUGeneratorImpl();
gen->set_engine(engine_);
gen->set_next_float_normal_sample(next_float_normal_sample_);
gen->set_next_double_normal_sample(next_double_normal_sample_);
return gen;
}
} // namespace at