forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAffineQuantizerBase.h
47 lines (42 loc) · 1.43 KB
/
AffineQuantizerBase.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#pragma once
#include <c10/macros/Export.h>
#include <c10/core/ScalarType.h>
namespace at {
namespace native {
// Quantize a float value into a uint value given scale and zero_point
template <typename T>
TORCH_API T quantize_val(double scale, int64_t zero_point, float value);
// TODO combine this with quantize_val once the numerics for ARM are aligned
// with it
template <typename T>
T quantize_val_arm(
const float scale,
const int32_t zero_point,
const float value);
template <typename T, int precision = 8>
void quantize_vec(
double scale,
int64_t zero_point,
const float* src,
T* dst,
size_t count = 8);
template <typename T>
TORCH_API float dequantize_val(double scale, int64_t zero_point, T value);
template <typename T>
TORCH_API float dequantize_vec(
double scale,
int64_t zero_point,
const T* src,
float* dst,
size_t count = 8);
template <typename SRC_T, typename DST_T>
TORCH_API DST_T requantize_val(double, int64_t, double, int64_t, SRC_T src);
// Given a multiplier and a zero_point, requantize int32_t computed values back
// to quantized values. See comment above
// make_per_tensor_affine_quantizer function for the usage of int64_t
template <typename DST_T>
TORCH_API DST_T
requantize_from_int(double multiplier, int64_t zero_point, int64_t src);
int quantize_val_float_qparams(float scale, float zero_point, float value, int qmin, int qmax);
} // namespace native
} // namespace at