forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_guards.py
915 lines (737 loc) · 30 KB
/
_guards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import dataclasses
import enum
import functools
import logging
import threading
import traceback
import unittest.mock
import weakref
from abc import abstractmethod
from contextlib import contextmanager
from typing import (
Any,
Callable,
Dict,
Generic,
List,
NamedTuple,
Optional,
Set,
Tuple,
TYPE_CHECKING,
TypeVar,
)
from torch.utils import _pytree as pytree
from torch.utils._traceback import CapturedTraceback
from torch.utils.weak import WeakTensorKeyDictionary
log = logging.getLogger(__name__)
if TYPE_CHECKING:
import sympy
# Import the following modules during type checking to enable code intelligence features,
# such as auto-completion in tools like pylance, even when these modules are not explicitly
# imported in user code.
import torch
"""
torch._guards is the definitional source of truth for general purpose guard structures.
An important thing to keep in mind here is the preservation of layering. There should be no dynamo notions,
and no guard installation notions here.
"""
class CompileId(NamedTuple):
frame_id: int
# This id is per-frame, and counts how many times we've compiled this
# frame. This could have been a global id but having this be per-frame
# gives you a better intuitive sense for how many recompiles have occurred
# so far.
frame_compile_id: int
# TODO: consider also tracking the recompilation count
def __str__(self):
return f"{self.frame_id}/{self.frame_compile_id}"
class TraceId(NamedTuple):
compile_id: CompileId
# This starts off as 0, and every time we restart analysis it goes
# up by one
attempt: int
def __str__(self):
if self.attempt == 0:
return str(self.compile_id)
else:
return f"{self.compile_id}_{self.attempt}"
class GuardSource(enum.Enum):
LOCAL = 0
GLOBAL = 1
LOCAL_SPECIALIZED_NN_MODULE = 2
GLOBAL_SPECIALIZED_NN_MODULE = 3
CONSTANT = 4
RANDOM_VALUE = 5
SHAPE_ENV = 6
LOCAL_FSDP_MODULE = 7
GLOBAL_FSDP_MODULE = 8
BACKWARD_STATE = 9
EPHEMERAL = 10
SYNTHETIC_LOCAL = 11
LOCAL_UNSPECIALIZED_NN_MODULE = 12
GLOBAL_UNSPECIALIZED_NN_MODULE = 13
LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE = 14
GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE = 15
def is_fsdp_module(self) -> bool:
return self in (GuardSource.GLOBAL_FSDP_MODULE, GuardSource.LOCAL_FSDP_MODULE)
def is_specialized_nn_module(self) -> bool:
return (
self
in (
GuardSource.GLOBAL_SPECIALIZED_NN_MODULE,
GuardSource.LOCAL_SPECIALIZED_NN_MODULE,
)
# TODO (anijain2305) - Investigate why is_fsdp_module required.
or self.is_fsdp_module()
)
def is_unspecialized_nn_module(self) -> bool:
return self in (
GuardSource.GLOBAL_UNSPECIALIZED_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_NN_MODULE,
GuardSource.GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
def is_unspecialized_builtin_nn_module(self) -> bool:
return self in (
GuardSource.GLOBAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
def is_local(self):
return self in (
GuardSource.LOCAL,
GuardSource.LOCAL_SPECIALIZED_NN_MODULE,
GuardSource.LOCAL_FSDP_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_NN_MODULE,
GuardSource.LOCAL_UNSPECIALIZED_BUILTIN_NN_MODULE,
)
"""
Base class for a "GuardBuilder" role.
The GuardBuilderBase role is to represent a scope within which to build a guard. The name is a little
confusing, as its not a builder, but for the sake of avoiding a lot of renames and keeping the original reference
to torchdynamo's GuardBuilder.
Note: create_fn is invoked with a GuardBuilderBase and a Guard. A GuardBuilder is chosen based
on GuardSource's select function.
There is value in keeping this GuardBuilderBase empty to keep layering clean.
"""
class GuardBuilderBase:
pass
class ShapeGuard(NamedTuple):
expr: sympy.Expr
stack: CapturedTraceback
@dataclasses.dataclass
class Guard:
# originating_source is the source that called the make_guard method to
# construct this guard object. The property name specifies what exactly it
# is the guard is guarding on. The meaning of the name is dependent on the
# create_fn; you must look at the use-site inside create_fn to know what
# name means.
#
# That being said, although you might think this is just a "name", name is
# usually an arbitrary Python expression that will be evaluated with all
# globals (and locals, if you create a LOCAL guard) to extract the Python
# object that we want to perform guard tests on. This evaluation
# typically happens in GuardBuilder.eval. In these cases, name is
# typically produced by originating_source.name() (not to be confused with
# GuardSource - the property source).
#
# Occasionally, name is not a valid Python expression; sometimes
# it is meaningless. Example create_fns that are like this include
# GRAD_MODE and SHAPE_ENV.
originating_source: Source
create_fn: Callable[[GuardBuilderBase, Guard], None]
# Export only. These values are written to at time of guard check_fn creation.
guard_types: Optional[List[str]] = None
code_list: Optional[List[str]] = None
obj_weakref: Optional[object] = None
guarded_class_weakref: Optional[type] = None
stack: Optional[CapturedTraceback] = None
user_stack: Optional[traceback.StackSummary] = None
_hash: Optional[int] = None
def __hash__(self):
if self._hash is None:
self._hash = hash((self.name, self.source, id(self.create_fn)))
return self._hash
def sort_key(self):
# Put the duplicate input guards at the end. The duplicate guards have
# two sources while guard.name only considers one source.
from torch._dynamo.guards import GuardBuilder
is_duplicate_input = (
isinstance(self.create_fn, functools.partial)
and self.create_fn.func is GuardBuilder.DUPLICATE_INPUT
)
return (
is_duplicate_input,
self.source.value if self.source else -1,
len(self.name),
self.name,
self.inner_create_fn().__code__.co_firstlineno,
)
def __lt__(self, other):
return self.sort_key() < other.sort_key()
def inner_create_fn(self):
if isinstance(self.create_fn, functools.partial):
return self.create_fn.func
else:
return self.create_fn
@property
def name(self) -> str:
return self.originating_source.name()
@property
def source(self) -> GuardSource:
return self.originating_source.guard_source()
@staticmethod
def weakref_to_str(obj_weakref):
"""
This is a workaround of a Python weakref bug.
`obj_weakref` is instance returned by `weakref.ref`,
`str(obj_weakref)` is buggy if the original obj overrides __getattr__, e.g:
class MyConfig(dict):
def __getattr__(self, x):
return self[x]
obj = MyConfig(offset=5)
obj_weakref = weakref.ref(obj)
str(obj_weakref) # raise error: KeyError: '__name__'
"""
if isinstance(obj_weakref, weakref.ReferenceType):
obj = obj_weakref()
if obj is not None:
return f"<weakref at {hex(id(obj_weakref))}; to '{obj.__class__.__name__}' at {hex(id(obj))}>"
else:
return f"<weakref at {hex(id(obj_weakref))}; dead>"
else:
return str(obj_weakref)
def __repr__(self):
s = f"""
{self.source.name.lower() if self.source else ""} {repr(self.name)} {self.inner_create_fn().__name__}
{{
'guard_types': {self.guard_types},
'code': {self.code_list},
'obj_weakref': {self.weakref_to_str(self.obj_weakref)}
'guarded_class': {self.guarded_class_weakref}
}}
"""
return s
def __str__(self):
output = f"Name: {repr(self.name)}\n"
source = self.source.name.lower() if self.source else ""
output += f" Source: {source}\n"
output += f" Create Function: {self.inner_create_fn().__name__}\n"
output += f" Guard Types: {self.guard_types}\n"
output += f" Code List: {self.code_list}\n"
output += f" Object Weakref: {self.weakref_to_str(self.obj_weakref)}\n"
output += f" Guarded Class Weakref: {self.guarded_class_weakref}\n"
return output
def create(self, builder: GuardBuilderBase):
try:
return self.create_fn(builder, self)
except Exception:
log.exception("Error while creating guard:\n%s", str(self).rstrip())
if self.stack:
log.error("Created at:\n%s", "".join(self.stack.format()[-4:]).rstrip())
raise
def is_specialized_nn_module(self):
return self.source.is_specialized_nn_module()
def is_fsdp_module(self):
return self.source.is_fsdp_module()
def is_local(self):
return self.source.is_local()
def set_export_info(self, guard_type, guarded_class, code_list, obj_weakref):
if not self.guard_types:
self.guard_types = []
self.guard_types.append(guard_type)
assert self.guarded_class_weakref in (
guarded_class,
None,
), "Guarded class id must be identical, or None"
self.guarded_class_weakref = guarded_class
if not self.code_list:
self.code_list = code_list
else:
self.code_list.extend(code_list)
# Some objects are ephemeral, e.g., list[slice(1, 2)]. If we have
# multiple guards on the same object, the weakref can die between the
# invocation of set_export_info calls. So a dead weakref is also
# acceptable.
assert (
self.obj_weakref in (obj_weakref, None)
or callable(self.obj_weakref)
and self.obj_weakref() is None
), "Guarded object must be identical, None or ephemeral (dead weakref)"
self.obj_weakref = obj_weakref
T = TypeVar("T")
"""
Parent structure for guard env expressions.
A GuardEnvExpr can have any subtype.
Note: All subtypes must be handled exhaustively in
torch._dynamo.guards._parse_guard_env_guards to avoid a RuntimeError.
"""
@dataclasses.dataclass
class GuardEnvExpr:
pass
"""
A class representing a pair of duplicate inputs.
input_pos_a and input_pos_b are input positions we have deduped.
"""
@dataclasses.dataclass
class DuplicateInputs(GuardEnvExpr):
input_source_a: Source
input_source_b: Source
def __post_init__(self):
assert self.input_source_a != self.input_source_b
"""
Checkpointable is an interface for driving state snapshotting, left purposely vague for now.
copy_graphstate() -> T, a somewhat legacy name, is expected to emit a snapshot of any type that
can also be taken in at restore_graphstate(T) calls.
When to snapshot, is, at the moment, an implementation detail of upstream callers. Checkpointable
does not provide any garuantees around consistency, idempotency, or safety of calling its APIs, yet.
In the future, it will have a closer coupling to a generic Checkpoint management system.
"""
class Checkpointable(Generic[T]):
@abstractmethod
def copy_graphstate(self) -> T: ...
@abstractmethod
def restore_graphstate(self, state: T): ...
class GuardsCheckpointState:
"""
The GuardCheckpointState - it is the T of Checkpointable[T] for GuardsContext
"""
dynamo_guards: Set[Guard] = set()
def __init__(self, dynamo_guards):
self.dynamo_guards = dynamo_guards
def diff(self, other):
"""
Produces a delta against another GuardsCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
Guard type objects.
"""
r = self.dynamo_guards.difference(other.dynamo_guards)
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class ModuleContextCheckpointState:
nn_modules: Dict[str, torch.nn.Module] = {}
def __init__(self, nn_modules):
self.nn_modules = nn_modules
def diff(self, other):
"""
Produces a delta against another ModuleContextCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
module key names.
"""
r = set(self.nn_modules.keys()).difference(set(other.nn_modules.keys()))
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class ModuleContext(Checkpointable[ModuleContextCheckpointState]):
def __init__(self) -> None:
self.nn_modules: Dict[str, Any] = {}
def copy_graphstate(self):
return ModuleContextCheckpointState(dict(self.nn_modules))
def restore_graphstate(self, state):
assert isinstance(state, ModuleContextCheckpointState)
self.nn_modules = state.nn_modules
class GlobalContextCheckpointState:
global_state: Dict[str, Tuple[Callable, ...]] = {}
def __init__(self, global_states):
self.global_state = global_states
def diff(self, other):
"""
Produces a delta against another GlobalContextCheckpointState.
Returns None if no delta is found, otherwise, return a set() of mismatched
global key names.
"""
r = set(self.global_state.keys()).difference(set(other.global_state.keys()))
if len(r) == 0:
return None
return r
def __eq__(self, other):
return self.diff(other) is None
class GlobalContext(Checkpointable[GlobalContextCheckpointState]):
"""
This keeps track of the global torch state during tracing of a function.
For example, torch.is_grad_enabled.
"""
_supported_global_states = {
"grad_enabled",
"torch_function_enabled",
"autocast_enabled",
"autocast_cpu_enabled",
"autocast_gpu_dtype",
"autocast_cpu_dtype",
"autocast_cache_enabled",
}
def __init__(self) -> None:
self.global_state: Dict[str, Tuple[Callable, ...]] = {}
def copy_graphstate(self):
return GlobalContextCheckpointState(dict(self.global_state))
def restore_graphstate(self, state):
assert isinstance(state, GlobalContextCheckpointState)
self.global_state = state.global_state
assert (
len(self.global_state) == len(self._supported_global_states)
and set(self.global_state.keys()) == self._supported_global_states
), "Global state mismatch"
for func, args in self.global_state.values():
func(args)
"""
A GuardsContext is a checkpointable representation of all the guards in the current tracing
context. It's lifecycle is bound 1:1 to the tracing context, and it should never be instantiated
directly outside of it. For passing around internal state representations of this object,
prefer to extract them with copy_graphstate to produce a GuardsCheckpointState.
"""
# Like a Set[Guard] but will record the user stack on all guards at the
# time they were installed at their destination
class GuardsSet:
def __init__(self, inner=None):
if inner is None:
inner = set()
self.inner = inner
def __iter__(self):
return iter(self.inner)
def __len__(self):
return len(self.inner)
# Subtraction along with bool is typically used to determine the delta of
# added guards between checkpoints for higher order ops
def __sub__(self, other):
return GuardsSet(self.inner - other.inner)
def __bool__(self):
return bool(self.inner)
def add(self, guard: Guard, *, collect_debug_stack=True, skip=0):
if guard in self.inner:
return
if collect_debug_stack:
if guard.stack is None:
guard.stack = CapturedTraceback.extract(skip=1 + skip)
if guard.user_stack is None:
guard.user_stack = TracingContext.extract_stack()
self.inner.add(guard)
def update(self, *others: Set[Guard]):
for o in others:
for g in o:
self.add(g, skip=1)
def remove_guards_with_source(self, source):
"""Delete all guards with a given source"""
self.inner = {g for g in self.inner if g.originating_source != source}
class GuardsContext(Checkpointable[GuardsCheckpointState]):
def __init__(self) -> None:
self.dynamo_guards: GuardsSet = GuardsSet()
self.aotautograd_guards: List[GuardEnvExpr] = []
def copy_graphstate(self):
return GuardsCheckpointState(set(self.dynamo_guards.inner))
def restore_graphstate(self, state):
# NB: "steals" the passed in state
assert isinstance(state, GuardsCheckpointState)
self.dynamo_guards = GuardsSet(state.dynamo_guards)
_TLS = threading.local()
"""
TracingContext is the source of truth for all currently accumulated information
needed to trace. Its lifecycle is kept 1:1 when using TorchDynamo, but other systems
are open to managing their own TracingContext with that in mind.
The purpose of TracingContext is not to be a dumping ground, or god object, but rather to avoid
having to plumb complex subsystems across multiple verticals.
Ex: A common example is guard accumulation between dynamo, shape_env, aot_autograd, and inductor.
Accessing the current tracing context via
TracingContext.get() allows users to accumulate their own guards for processing, without needing to know how
to plumb objects back up to where frame interpretation happened.
Note that you can end up with multiple TracingContext for a single compilation
of a frame, as we reset the TracingContext whenever we restart analysis.
CompileContext is a more overarching context that encompasses multiple restarts.
"""
class CompileContext:
@staticmethod
def get() -> CompileContext:
assert _TLS.compile_context is not None
return _TLS.compile_context
@staticmethod
def try_get() -> Optional[CompileContext]:
return getattr(_TLS, "compile_context", None)
def __init__(self, compile_id):
assert compile_id is None or isinstance(compile_id, CompileId)
self.compile_id: Optional[CompileId] = compile_id
self.attempt = 0
@staticmethod
def current_compile_id():
self = CompileContext.try_get()
if self is None:
return None
return self.compile_id
@staticmethod
def current_trace_id():
self = CompileContext.try_get()
if self is None:
return None
if self.compile_id is None:
return None
return TraceId(self.compile_id, self.attempt)
class TracingContext:
"""
Provides the currently installed TracingContext, or None.
Note that it is a staticmethod, and invocations outside of `with tracing()` (see below), are valid but
will return None.
"""
@staticmethod
def try_get() -> Optional[TracingContext]:
return getattr(_TLS, "tracing_context", None)
@staticmethod
def get() -> TracingContext:
if ctx := TracingContext.try_get():
return ctx
raise RuntimeError(
"TracingContext.get() must be called within an ongoing trace."
)
def __init__(self, fake_mode):
self.guards_context = GuardsContext()
self.module_context = ModuleContext()
self.global_context = GlobalContext()
self.fake_mode = fake_mode
self.frame_summary_stack = []
# This is morally part of frame_summary_stack, but it is kept separate
# for clarity. As we process a frame, this variable gets updated
# to keep track of what line we are in the function. We make a
# function call, this gets cleared and the frame location is pushed
# to frame_summary_stack (prepping this variable for the inner frame's
# progress)
self.loc_in_frame = None
# this is only set after aot_autograd
self.fw_metadata = None
# this is only set after aot_autograd
self.aot_graph_name = None
self.params_flat = None
# this is for extended return calling convention from backend
# compiler to aot_autograd
# Per output, what the compiler specified stride of the output is,
# or None if no stride is known. This is always the HINT, it
# is never a SymInt (it would be better if it was a SymInt, but
# I can't conveniently get this from Inductor atm. Also, be
# careful not to accidentally induce guards on the SymInt if
# you ever do change this in aot_autograd.py; you should check
# on permutations preferentially.)
self.output_strides: Optional[List[Optional[Tuple[int, ...]]]] = None
# When this is True, whenever we encounter an int in Dynamo tracing,
# we will (1) force unspec it and (2) force it as a size-like unbacked
# integer. This is currently used when processing certain lists of
# ints that are known to be size-like and may have 0/1 entries that we
# must not specialize on.
self.force_unspec_int_unbacked_size_like = False
# See note [Tensor Fakification and Symbol Caching]
self.tensor_to_context = WeakTensorKeyDictionary()
# If this true, Aot Autograd will return output Fake Tensors with appropiate
# meta on the first invocation
# see note: [Returning Fake Tensors on First AOT Autograd Call]
self.fakify_first_call = False
def clear(self):
# Look at the note in output_graph.py in function `save_global_state`
# for the context on clearing global context.
self.global_context.global_state = {}
@staticmethod
@contextmanager
def patch(**kwargs):
prior = {}
ctx = TracingContext.get()
for key in kwargs.keys():
# KeyError on invalid entry
prior[key] = getattr(ctx, key)
for key, val in kwargs.items():
setattr(ctx, key, val)
try:
yield
finally:
for key, val in prior.items():
setattr(ctx, key, val)
@staticmethod
def extract_stack():
self = TracingContext.try_get()
if self is None:
return traceback.StackSummary()
stack = self.frame_summary_stack
if self.loc_in_frame is not None:
stack = stack + [self.loc_in_frame]
return traceback.StackSummary.from_list(stack)
# Call this when you want to call into some code that isn't necessarily
# associated with the current frame state
@staticmethod
@contextlib.contextmanager
def clear_frame():
tc = TracingContext.get()
with unittest.mock.patch.object(
tc, "frame_summary_stack", []
), unittest.mock.patch.object(tc, "loc_in_frame", None):
try:
yield
except Exception as e:
# Prevent real_stack from getting attached
#
# The invariant is that if an Exception as real_stack, we've
# appropriately attached a user stack and we no longer need to
# attach anything. Because we cannot conveniently interpose
# when an exception is thrown, we instead interpose everywhere
# we set what the user stack is set (using the context
# manager). However, our compiler stack does "tail calls"
# (when it calls into user compiler), at which point the
# parent exception frames would incorrectly attach an
# incorrect frame.
#
# However, if, somehow, someone raised an exception with this
# scope that had a stack (for example, because they are
# restoring the user stack state appropriately as they process
# node by node), we should respect it. Thus, we cannot
# unconditionally set None.
if not hasattr(e, "real_stack"):
e.real_stack = None # type: ignore[attr-defined]
raise
@staticmethod
@contextlib.contextmanager
def current_frame(frame_summary):
# frame_summary can be None to solely take advantage of real_stack
# attachment to thrown exceptions
tc = TracingContext.get()
if frame_summary is not None:
tc.frame_summary_stack.append(frame_summary)
old = tc.loc_in_frame
tc.loc_in_frame = None
try:
yield
except Exception as e:
if not hasattr(e, "real_stack"):
e.real_stack = tc.extract_stack() # type: ignore[attr-defined]
raise
finally:
if frame_summary is not None:
tc.frame_summary_stack.pop()
tc.loc_in_frame = old
@staticmethod
@contextlib.contextmanager
def report_output_strides():
tc = TracingContext.try_get()
if tc is None:
yield None
return
old_output_strides = tc.output_strides
tc.output_strides = []
try:
yield tc.output_strides
finally:
tc.output_strides = old_output_strides
@staticmethod
def set_current_loc(filename, lineno, frame_name):
TracingContext.get().loc_in_frame = traceback.FrameSummary(
filename, lineno, frame_name, lookup_line=False
)
@contextmanager
def compile_context(context: Optional[CompileContext]):
old_context = getattr(_TLS, "compile_context", None)
_TLS.compile_context = context
try:
yield context
finally:
_TLS.compile_context = old_context
@contextmanager
def tracing(context: Optional[TracingContext]):
"""
This function installs the passed in tracing context as a dynamic scoped
global variable.
Calls to TracingContext.get() while not under a `with tracing()` context
will return None.
"""
old_context = getattr(_TLS, "tracing_context", None)
_TLS.tracing_context = context
try:
yield context
except Exception as e:
if not hasattr(e, "real_stack") and context is not None:
e.real_stack = context.extract_stack() # type: ignore[attr-defined]
raise
finally:
if (
context is not None
and context.fake_mode is not None
and context.fake_mode.shape_env is not None
):
context.fake_mode.shape_env.cleanup()
_TLS.tracing_context = old_context
# Subclasses can be found in torch/_dynamo/source.py
# TODO(voz): Consider a toplevel torch/_source.py
@dataclasses.dataclass(frozen=True)
class Source:
def is_dict_key(self):
return False
def is_ephemeral(self):
return False
def reconstruct(self, codegen):
raise NotImplementedError
def guard_source(self) -> GuardSource:
raise NotImplementedError
def name(self) -> str:
raise NotImplementedError
def make_guard(self, fn) -> Guard:
if self.guard_source() is GuardSource.CONSTANT:
raise NotImplementedError
return Guard(self, fn)
def is_specialized_nn_module(self) -> bool:
return self.guard_source().is_specialized_nn_module()
def subguards_allowed(self):
"""True if you can guard on attributes of this"""
return self.guard_source() != GuardSource.SYNTHETIC_LOCAL
# Subclasses can be found in torch/_dynamo/source.py
@dataclasses.dataclass(frozen=True)
class ChainedSource(Source):
base: Source
def is_dict_key(self):
# Recurse until you either hit a ConstDictKey or a Source
return self.base.is_dict_key()
def is_ephemeral(self):
return self.base.is_ephemeral()
def detect_fake_mode(inputs: Any = None):
"""
Attempts to "detect" what the current fake mode is. If there is one ambiently
available from TracingContext, we preferentially use that. Otherwise, we
heuristically detect the fake mode via the following sources, in order of
priority:
- Currently active fake mode on stack
- Fake mode associated with passed in tensors (inputs does not
have to be flattened)
"""
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
fake_modes = []
if context := TracingContext.try_get():
fake_mode = context.fake_mode
if fake_mode is not None:
fake_modes.append((fake_mode, "tracing context", 0))
from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
for i, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
if isinstance(m, FakeTensorMode):
fake_modes.append((m, "active fake mode", i))
flat_inputs = pytree.tree_leaves(inputs)
for i, flat_input in enumerate(flat_inputs):
if isinstance(flat_input, FakeTensor):
fake_modes.append((flat_input.fake_mode, "fake tensor input", i))
if fake_modes:
fake_mode, desc1, i1 = fake_modes[0]
for m, desc2, i2 in fake_modes[1:]:
assert fake_mode is m, (
f"fake mode ({fake_mode}) from {desc1} {i1} doesn't match mode ({m}) from {desc2} {i2}\n\n"
f"fake mode from {desc1} {i1} allocated at:\n{fake_mode.stack}\n"
f"fake mode from {desc2} {i2} allocated at:\n{m.stack}"
)
return fake_mode
else:
return None
def active_fake_mode():
"""
Inspects the dispatch mode stack for an active fake mode and returns it.
Returns None if no fake mode is active.
"""
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.utils._python_dispatch import _get_current_dispatch_mode_stack
for _, m in enumerate(reversed(_get_current_dispatch_mode_stack())):
if isinstance(m, FakeTensorMode):
return m
return None