-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
205 lines (154 loc) · 6.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
import logging
import numpy as np
import multiprocessing as mp
import tensorflow as tf
import gym
import a3c
S_DIM = 4
A_DIM = 2
ACTOR_LR_RATE = 0.0001
CRITIC_LR_RATE = 0.001
NUM_AGENTS = 16
TRAIN_SEQ_LEN = 500 # take as a train batch
TRAIN_EPOCH = 10000
MODEL_SAVE_INTERVAL = 100
RANDOM_SEED = 42
RAND_RANGE = 1000
SUMMARY_DIR = './results'
MODEL_DIR = './models'
TRAIN_TRACES = './cooked_traces/'
# NN_MODEL = './results/nn_model_ep_10800.ckpt'
NN_MODEL = None
def central_agent(net_params_queues, exp_queues):
assert len(net_params_queues) == NUM_AGENTS
assert len(exp_queues) == NUM_AGENTS
with tf.Session() as sess, open(SUMMARY_DIR + '/log_central', 'wb') as log_file:
actor = a3c.ActorNetwork(sess, state_dim=S_DIM, action_dim=A_DIM, learning_rate=ACTOR_LR_RATE)
critic = a3c.CriticNetwork(sess, state_dim=S_DIM, learning_rate=CRITIC_LR_RATE)
summary_ops, summary_vars = a3c.build_summaries()
sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph) # training monitor
saver = tf.train.Saver() # save neural net parameters
# restore neural net parameters
nn_model = NN_MODEL
if nn_model is not None: # nn_model is the path to file
saver.restore(sess, nn_model)
print("Model restored.")
# while True: # assemble experiences from agents, compute the gradients
for ep in xrange(TRAIN_EPOCH):
# synchronize the network parameters of work agent
actor_net_params = actor.get_network_params()
critic_net_params = critic.get_network_params()
for i in xrange(NUM_AGENTS):
net_params_queues[i].put([actor_net_params, critic_net_params])
# record average reward and td loss change
# in the experiences from the agents
total_batch_len = 0.0
total_reward = 0.0
total_td_loss = 0.0
total_agents = 0.0
# assemble experiences from the agents
actor_gradient_batch = []
critic_gradient_batch = []
for i in xrange(NUM_AGENTS):
s_batch, a_batch, r_batch, terminal = exp_queues[i].get()
actor_gradient, critic_gradient, td_batch = \
a3c.compute_gradients(
s_batch=np.vstack(s_batch),
a_batch=np.vstack(a_batch),
r_batch=np.vstack(r_batch),
terminal=terminal, actor=actor, critic=critic)
actor_gradient_batch.append(actor_gradient)
critic_gradient_batch.append(critic_gradient)
total_reward += np.sum(r_batch)
total_td_loss += np.sum(td_batch)
total_batch_len += len(r_batch)
total_agents += 1.0
# compute aggregated gradient
assert NUM_AGENTS == len(actor_gradient_batch)
assert len(actor_gradient_batch) == len(critic_gradient_batch)
for i in xrange(len(actor_gradient_batch)):
actor.apply_gradients(actor_gradient_batch[i])
critic.apply_gradients(critic_gradient_batch[i])
# log training information
avg_reward = total_reward / total_agents
avg_td_loss = total_td_loss / total_batch_len
log_file.write('Epoch: ' + str(ep) +
' TD_loss: ' + str(avg_td_loss) +
' Avg_reward: ' + str(avg_reward) + '\n')
log_file.flush()
summary_str = sess.run(summary_ops, feed_dict={
summary_vars[0]: avg_td_loss,
summary_vars[1]: avg_reward
})
writer.add_summary(summary_str, ep)
writer.flush()
if ep % MODEL_SAVE_INTERVAL == 0:
# Save the neural net parameters to disk.
save_path = saver.save(sess, MODEL_DIR + "/nn_model_ep_" +
str(ep) + ".ckpt")
def agent(agent_id, net_params_queue, exp_queue):
env = gym.make("CartPole-v0")
env.force_mag = 100.0
with tf.Session() as sess, open(SUMMARY_DIR + '/log_agent_' + str(agent_id), 'wb') as log_file:
actor = a3c.ActorNetwork(sess,
state_dim=S_DIM, action_dim=A_DIM,
learning_rate=ACTOR_LR_RATE)
critic = a3c.CriticNetwork(sess,
state_dim=S_DIM,
learning_rate=CRITIC_LR_RATE)
# initial synchronization of the network parameters from the coordinator
actor_net_params, critic_net_params = net_params_queue.get()
actor.set_network_params(actor_net_params)
critic.set_network_params(critic_net_params)
time_stamp = 0
for ep in xrange(TRAIN_EPOCH):
obs = env.reset()
s_batch = []
a_batch = []
r_batch = []
for step in xrange(TRAIN_SEQ_LEN):
s_batch.append(obs)
action_prob = actor.predict(np.reshape(obs, (1, S_DIM)))
action_cumsum = np.cumsum(action_prob)
a = (action_cumsum > np.random.randint(1, RAND_RANGE) / float(RAND_RANGE)).argmax()
action_vec = np.zeros(A_DIM)
action_vec[a] = 1
a_batch.append(action_vec)
obs, rew, done, info = env.step(a)
r_batch.append(rew)
if done:
break
exp_queue.put([s_batch, a_batch, r_batch, done])
actor_net_params, critic_net_params = net_params_queue.get()
actor.set_network_params(actor_net_params)
critic.set_network_params(critic_net_params)
log_file.write('epoch' + str(ep) + 'reward' + str(np.sum(rew)) + 'step' + str(len(r_batch)))
log_file.flush()
def main():
np.random.seed(RANDOM_SEED)
# inter-process communication queues
net_params_queues = []
exp_queues = []
for i in xrange(NUM_AGENTS):
net_params_queues.append(mp.Queue(1))
exp_queues.append(mp.Queue(1))
# create a coordinator and multiple agent processes
# (note: threading is not desirable due to python GIL)
coordinator = mp.Process(target=central_agent,
args=(net_params_queues, exp_queues))
coordinator.start()
agents = []
for i in xrange(NUM_AGENTS):
agents.append(mp.Process(target=agent,
args=(i,
net_params_queues[i],
exp_queues[i])))
for i in xrange(NUM_AGENTS):
agents[i].start()
# wait unit training is done
coordinator.join()
if __name__ == '__main__':
main()