-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathtransformers_trainer_ddp.py
284 lines (249 loc) · 15.7 KB
/
transformers_trainer_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import argparse
from src.config import Config, from_label_id_tensor_to_label_sequence
import time
from src.model import TransformersCRF
import torch
import os
from src.config.utils import write_results
from src.config.transformers_util import get_huggingface_optimizer_and_scheduler
import pickle
import tarfile
from tqdm import tqdm
from collections import Counter
from src.data import TransformersNERDataset
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from accelerate.utils import set_seed
import logging
from functools import partial
from accelerate import Accelerator
from accelerate.logging import get_logger
from src.data.data_utils import PAD
import datasets
from datasets.metric import Metric
"""
Same as transformers_trainer.py but with distributed training.
"""
from accelerate import DistributedDataParallelKwargs
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
tqdm = partial(tqdm, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}', disable=not accelerator.is_local_main_process)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = get_logger(__name__)
logger.setLevel(logging.INFO)
def parse_arguments(parser):
###Training Hyperparameters
parser.add_argument('--seed', type=int, default=42, help="random seed")
parser.add_argument('--dataset', type=str, default="conll2003_sample")
parser.add_argument('--optimizer', type=str, default="adamw", help="This would be useless if you are working with transformers package")
parser.add_argument('--learning_rate', type=float, default=2e-5, help="usually we use 0.01 for sgd but 2e-5 working with bert/roberta")
parser.add_argument('--momentum', type=float, default=0.0)
parser.add_argument('--l2', type=float, default=1e-8)
parser.add_argument('--lr_decay', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=30, help="batch_size per device. For distributed training, this is the batch_size per gpu")
parser.add_argument('--num_epochs', type=int, default=100, help="Usually we set to 100.")
parser.add_argument('--train_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--dev_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--test_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--max_no_incre', type=int, default=80, help="early stop when there is n epoch not increasing on dev")
parser.add_argument('--max_grad_norm', type=float, default=1.0, help="The maximum gradient norm, if <=0, means no clipping, usually we don't use clipping for normal neural ncrf")
parser.add_argument('--fp16', type=int, choices=[0, 1], default=1, help="use 16-bit floating point precision instead of 32-bit")
##model hyperparameter
parser.add_argument('--model_folder', type=str, default="english_model", help="The name to save the model files")
parser.add_argument('--hidden_dim', type=int, default=0, help="hidden size of the LSTM, usually we set to 200 for LSTM-CRF")
parser.add_argument('--dropout', type=float, default=0.5, help="dropout for embedding")
parser.add_argument('--embedder_type', type=str, default="roberta-base", help="you can use 'bert-base-uncased' and so on")
parser.add_argument('--add_iobes_constraint', type=int, default=0, choices=[0,1], help="add IOBES constraint for transition parameters to enforce valid transitions")
parser.add_argument("--print_detail_f1", type= int, default= 0, choices= [0, 1], help= "Open and close printing f1 scores for each tag after each evaluation epoch")
parser.add_argument("--earlystop_atr", type=str, default="micro", choices= ["micro", "macro"], help= "Choose between macro f1 score and micro f1 score for early stopping evaluation")
parser.add_argument('--mode', type=str, default="train", choices=["train", "test"], help="training model or test mode")
parser.add_argument('--test_file', type=str, default="data/conll2003_sample/test.txt", help="test file for test mode, only applicable in test mode")
args = parser.parse_args()
for k in args.__dict__:
logger.info(k + ": " + str(args.__dict__[k]))
return args
def train_model(config: Config, epoch: int, train_loader: DataLoader, dev_loader: DataLoader, test_loader: DataLoader):
### Data Processing Info
train_num = len(train_loader)
logger.info(f"[Data Info] number of training instances: {train_num}")
logger.info(f"[Model Info]: Working with transformers package from huggingface with {config.embedder_type}")
logger.info(f"[Optimizer Info]: You should be aware that you are using the optimizer from huggingface.")
logger.info(f"[Optimizer Info]: Change the optimier in transformers_util.py if you want to make some modifications.")
model = TransformersCRF(config)
optimizer, scheduler = get_huggingface_optimizer_and_scheduler(model=model, learning_rate=config.learning_rate,
num_training_steps=len(train_loader) * epoch,
weight_decay=0.0, eps = 1e-8, warmup_step=0)
logger.info(f"[Optimizer Info] Modify the optimizer info as you need.")
logger.info(optimizer)
model, optimizer, train_loader, dev_loader, test_loader, scheduler = accelerator.prepare(model, optimizer, train_loader, dev_loader, test_loader, scheduler)
metric = datasets.load_metric('seqeval')
best_dev = [-1, 0]
best_test = [-1, 0]
model_folder = config.model_folder
res_folder = "results"
if os.path.exists("model_files/" + model_folder):
raise FileExistsError(
f"The folder model_files/{model_folder} exists. Please either delete it or create a new one "
f"to avoid override.")
model_path = f"model_files/{model_folder}/lstm_crf.m"
config_path = f"model_files/{model_folder}/config.conf"
res_path = f"{res_folder}/{model_folder}.results"
logger.info("[Info] The model will be saved to: %s.tar.gz" % (model_folder))
os.makedirs(f"model_files/{model_folder}", exist_ok= True) ## create model files. not raise error if exist
os.makedirs(res_folder, exist_ok=True)
no_incre_dev = 0
logger.info(f"[Train Info] Start training, you have set to stop if performace not increase for {config.max_no_incre} epochs")
for i in tqdm(range(1, epoch + 1), desc="Epoch"):
epoch_loss = 0
start_time = time.time()
model.zero_grad()
model.train()
for iter, batch in tqdm(enumerate(train_loader, 1), desc="--training batch", total=len(train_loader)):
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=bool(config.fp16)):
loss = model(subword_input_ids = batch.input_ids,
word_seq_lens = batch.word_seq_len,
orig_to_tok_index = batch.orig_to_tok_index,
attention_mask = batch.attention_mask,
labels = batch.label_ids).sum()
epoch_loss += loss.item()
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), config.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
model.zero_grad()
end_time = time.time()
logger.info(f"Epoch {i}: {epoch_loss:.5f}, Time is {(end_time - start_time):.2f}s")
model.eval()
dev_metrics = evaluate_model(config, model, dev_loader, "dev", metric)
test_metrics = evaluate_model(config, model, test_loader, "test", metric)
if dev_metrics[2] > best_dev[0]:
logger.info(f"saving the best model with best dev f1 score {dev_metrics[2]}")
no_incre_dev = 0
best_dev[0] = dev_metrics[2]
best_dev[1] = i
best_test[0] = test_metrics[2]
best_test[1] = i
if accelerator.is_main_process:
module = model.module if hasattr(model, 'module') else model
torch.save(module.state_dict(), model_path)
# Save the corresponding config as well.
f = open(config_path, 'wb')
pickle.dump(config, f)
f.close()
write_results(res_path, test_loader.dataset.insts)
else:
no_incre_dev += 1
model.zero_grad()
if no_incre_dev >= config.max_no_incre:
logger.info("early stop because there are %d epochs not increasing f1 on dev"%no_incre_dev)
break
logger.info("Archiving the best Model...")
with tarfile.open(f"model_files/{model_folder}.tar.gz", "w:gz") as tar:
tar.add(f"model_files/{model_folder}", arcname=os.path.basename(model_folder))
logger.info("Finished archiving the models")
logger.info("The best dev: %.2f" % (best_dev[0]))
logger.info("The corresponding test: %.2f" % (best_test[0]))
logger.info("Final testing.")
module = model.module if hasattr(model, 'module') else model
model.load_state_dict(torch.load(model_path))
model.eval()
evaluate_model(config, model, test_loader, "test", metric)
write_results(res_path, test_loader.dataset.insts)
def evaluate_model(config: Config,
model: TransformersCRF,
data_loader: DataLoader,
name: str,
metric:Metric,
print_each_type_metric: bool = False):
## evaluation
all_predictions = []
all_golds = []
insts = data_loader.dataset.insts
with torch.no_grad(), torch.cuda.amp.autocast(enabled=bool(config.fp16)):
for batch_id, batch in tqdm(enumerate(data_loader, 0), desc="--evaluating batch", total=len(data_loader)):
batch_max_scores, batch_max_ids = model(subword_input_ids= batch.input_ids,
word_seq_lens = batch.word_seq_len,
orig_to_tok_index = batch.orig_to_tok_index,
attention_mask = batch.attention_mask,
is_train=False)
batch_max_ids = accelerator.pad_across_processes(batch_max_ids, dim=1, pad_index=config.label2idx[PAD])
batch_max_ids = accelerator.gather_for_metrics(batch_max_ids)
batch_label_ids = accelerator.pad_across_processes(batch.label_ids, dim=1, pad_index=config.label2idx[PAD])
batch_label_ids = accelerator.gather_for_metrics(batch_label_ids)
word_seq_lens = accelerator.gather_for_metrics(batch.word_seq_len)
predict_sequences = from_label_id_tensor_to_label_sequence(batch_ids = batch_max_ids,
word_seq_lens = word_seq_lens,
need_to_reverse=True,
idx2label=config.idx2labels)
all_predictions.extend(predict_sequences)
gold_sequences = from_label_id_tensor_to_label_sequence(batch_ids = batch_label_ids,
word_seq_lens = word_seq_lens,
need_to_reverse=False,
idx2label=config.idx2labels)
all_golds.extend(gold_sequences)
results = metric.compute(predictions=all_predictions, references=all_golds, scheme="IOBES")
for inst, pred_seq in zip(insts, all_predictions):
inst.prediction = pred_seq
f1Scores = []
if print_each_type_metric or config.print_detail_f1 or (config.earlystop_atr == "macro"):
for key in results:
precision_key, recall_key, fscore_key = results[key]["precision"]* 100, results[key]["recall"]* 100, results[key]["f1"]* 100
logger.info(f"[{key}] Prec.: {precision_key:.2f}, Rec.: {recall_key:.2f}, F1: {fscore_key:.2f}")
f1Scores.append(fscore_key)
if len(f1Scores) > 0:
logger.info(f"[{name} set Total] Macro F1: {sum(f1Scores) / len(f1Scores):.2f}")
precision, recall, fscore = results['overall_precision'] * 100, results['overall_recall']* 100, results['overall_f1']* 100
logger.info(f"[{name} set Total] Prec.: {precision:.2f}, Rec.: {recall:.2f}, Micro F1: {fscore:.2f}")
if config.earlystop_atr == "macro" and len(f1Scores) > 0:
fscore = sum(f1Scores) / len(f1Scores)
return [precision, recall, fscore]
def main():
parser = argparse.ArgumentParser(description="Transformer CRF implementation")
opt = parse_arguments(parser)
set_seed(opt.seed)
metric = datasets.load_metric("seqeval")
if opt.mode == "train":
conf = Config(opt)
logger.info(f"[Data Info] Tokenizing the instances using '{conf.embedder_type}' tokenizer")
tokenizer = AutoTokenizer.from_pretrained(conf.embedder_type, add_prefix_space=True, use_fast=True)
logger.info(f"[Data Info] Reading dataset from: \n{conf.train_file}\n{conf.dev_file}\n{conf.test_file}")
train_dataset = TransformersNERDataset(conf.train_file, tokenizer, number=conf.train_num, is_train=True)
conf.label2idx = train_dataset.label2idx
conf.idx2labels = train_dataset.idx2labels
dev_dataset = TransformersNERDataset(conf.dev_file, tokenizer, number=conf.dev_num, label2idx=train_dataset.label2idx, is_train=False)
test_dataset = TransformersNERDataset(conf.test_file, tokenizer, number=conf.test_num, label2idx=train_dataset.label2idx, is_train=False)
num_workers = 8
conf.label_size = len(train_dataset.label2idx)
train_dataloader = DataLoader(train_dataset, batch_size=conf.batch_size, shuffle=True, num_workers=num_workers,
collate_fn=train_dataset.collate_fn)
dev_dataloader = DataLoader(dev_dataset, batch_size=conf.batch_size, shuffle=False, num_workers=num_workers,
collate_fn=dev_dataset.collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=conf.batch_size, shuffle=False, num_workers=num_workers,
collate_fn=test_dataset.collate_fn)
train_model(conf, conf.num_epochs, train_dataloader, dev_dataloader, test_dataloader)
else:
folder_name = f"model_files/{opt.model_folder}"
assert os.path.isdir(folder_name)
f = open(folder_name + "/config.conf", 'rb')
saved_config = pickle.load(f) # we use `label2idx` from old config, but test file, test number
f.close()
logger.info(f"[Data Info] Tokenizing the instances using '{saved_config.embedder_type}' tokenizer")
tokenizer = AutoTokenizer.from_pretrained(saved_config.embedder_type, add_prefix_space=True, use_fast=True)
test_dataset = TransformersNERDataset(opt.test_file, tokenizer, number=opt.test_num,
label2idx=saved_config.label2idx, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=1,
collate_fn=test_dataset.collate_fn)
model = TransformersCRF(saved_config)
model.load_state_dict(torch.load(f"{folder_name}/lstm_crf.m", map_location=torch.device('cpu')))
model, test_loader = accelerator.prepare(model, test_dataloader)
model.eval()
evaluate_model(config=saved_config, model=model, data_loader=test_dataloader, name="test mode", metric=metric,
print_each_type_metric=False)
if __name__ == "__main__":
main()