-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathprevalenceCore.m
360 lines (341 loc) · 14.8 KB
/
prevalenceCore.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
function [results, params] = prevalenceCore(a, P2, alpha)
% permutation-based prevalence inference using the minimum statistic, core
% implementation of the method proposed by Allefeld, Goergen and Haynes (2016)
%
% [results, params] = prevalenceCore(a, P2 = 1e6, alpha = 0.05)
%
% a: three-dimensional array of test statistic values
% (test units x subjects x first-level permutations)
% a(:, :, 1) must contain actual values
% P2: number of second-level permutations to generate
% alpha: significance level
% results: per-test unit analysis results
% .puGN uncorrected p-values for global null hypothesis (Eq. 24)
% .pcGN corrected p-values for global null hypothesis (Eq. 26)
% .puMN uncorrected p-values for majority null hypothesis (Eq. 19)
% .pcMN corrected p-values for majority null hypothesis (Eq. 21)
% .gamma0u uncorrected prevalence lower bounds (Eq. 20)
% .gamma0c corrected prevalence lower bounds (Eq. 23)
% .aTypical median values of test statistic where pcMN <= alpha (Fig. 4b)
% params: analysis parameters and properties
% .V number of test units
% .N number of subjects
% .P1 number of first-level permutations
% .P2 number of second-level permutations actually generated
% .alpha significance level
% .puMNMin smallest possible uncorrected p-value for majority H0
% .pcMNMin smallest possible corrected p-value for majority H0
% .gamma0uMax largest possible uncorrected prevalence lower bound
% .gamma0cMax largest possible corrected prevalence lower bound (Eq. 27)
%
% 'Test units' may correspond to different locations (voxels, sensors)
% different time points, or both. The user must take care that the
% 'spatially extended version of the prevalence null' (section 'Information
% maps' of Allefeld, Goergen and Haynes 2016) does make sense for the given
% set of test units, where "in a small area" translates to "in a small
% subset of test units". Otherwise the *corrected* p-values for the
% majority null and the *corrected* prevalence lower bounds are wrong.
%
% The 'majority null hypothesis' referenced here is a special case of the
% prevalence null hypothesis (Eq. 17), where the critical value is gamma0 =
% 0.5. It describes the situation where there is no effect in the majority
% of subjects in the population. Rejecting it allows to infer that there is
% an effect in the majority of subjects in the population. aTypical is only
% defined where the (spatially extended) majority null hypothesis can be
% rejected. Compare Fig. 4b and 'What does it mean for an effect to be
% "typical" in the population?' in the Discussion of Allefeld, Goergen and
% Haynes (2016).
%
% The function opens a figure window that shows results based on the
% permutations generated so far and is regularly updated. If it is closed,
% the computation is stopped (not aborted) and results are returned
% based on the permutations so far.
%
% The window shows in the upper panels
% -- p-values for the majority null hypothesis for all test units (blue dots),
% -- the currently smallest possible p-value (red line),
% -- and the significance threshold alpha (black line).
% In the left side uncorrected values, puMN and puMNMin,
% and on the right side corrected values, pcMN and pcMNMin.
%
% In the lower panels it shows
% -- prevalence lower bounds for all test units (blue dots),
% -- the currently largest possible prevalence lower bound (red line),
% -- and the majority prevalence 0.5 (black line).
% On the left side uncorrected values, gamma0u and gamma0uMax,
% and on the right side corrected values, gamma0c and gamma0cMax.
%
% Upper and lower panels show complementary representations of the same
% result, corresponding to algorithm Step 5a and 5b, respectively (see
% paper).
%
% If many blue dots lie on the red line in either panel, this indicates
% that a more differentiated result might be obtained from more
% permutations. However, the amount of additional permutations needed for
% that might be computationally unfeasible.
%
% If P2 is larger than the number of possible second-level permutations,
% P1 ^ N, an error message recommends to set P2 = P1 ^ N. If this
% recommendation is followed, Monte Carlo estimation is replaced by a
% complete enumeration of all possible second-level permutations. In this
% case, stopping the computation may bias the result.
%
% See also prevalence.
%
%
% Copyright (C) 2016–2019 Carsten Allefeld
%
% This program is free software: you can redistribute it and/or modify it
% under the terms of the GNU General Public License as published by the
% Free Software Foundation, either version 3 of the License, or (at your
% option) any later version. This program is distributed in the hope that
% it will be useful, but without any warranty; without even the implied
% warranty of merchantability or fitness for a particular purpose. See the
% GNU General Public License <http://www.gnu.org/licenses/> for more details.
% default parameter values
if (nargin < 2) || isempty(P2)
P2 = 1e6;
end
if (nargin < 3) || isempty(alpha)
alpha = 0.05;
end
% prepare plot window
fh = figure('Name', 'permutation-based prevalence inference using the minimum statistic');
set(gcf, 'Position', get(gcf, 'Position') .* [1 1 0 0] + [0 0 800 580])
text(0.5, 0.5, {'please wait for results', '', ...
'close window to stop computation at any time'}, ...
'HorizontalAlignment', 'center')
axis off
drawnow
% init
[V, N, P1] = size(a);
% V: test units, N: subjects, P1: first-level permutations
if P2 > P1 ^ N
fprintf('%d is larger than the number of possible second-level permutations\n', P2)
fprintf('please restart with parameter P2 = %d\n', P1 ^ N)
error('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^')
end
enum = (P2 == P1 ^ N);
if enum
fprintf('enumerating all %d second-level permutations\n\n', P2)
else
fprintf('randomly generating %d of %d possible second-level permutations\n\n', ...
P2, P1 ^ N)
end
% generate second-level permutations
uRank = zeros(V, 1);
cRank = zeros(V, 1);
nPermsReport = 1;
fprintf('the computation can be stopped by closing the output window\n\n')
tstart = tic;
for j = 1 : P2
% select first-level permutations
if enum % complete enumeration
% translate index of second-level permutation (j)
% into indices of first-level permutations (is)
jc = j - 1; % de2bi does the same
is = nan(N, 1);
for k = 1 : N
is(k) = rem(jc, P1) + 1;
jc = floor(jc / P1);
end
else % Monte Carlo
% randomly select permutations, except for first
if j == 1
is = ones(N, 1);
else
is = randi(P1, N, 1);
end
end
% translate indices of first-level permutations to indices into a
ind = sub2ind([N, P1], (1 : N)', is);
% test statistic: minimum across subjects
m = min(a(:, ind), [], 2);
% store result of neutral permutation (actual value) for each test unit
if j == 1
m1 = m;
end
% compare actual value with permutation value for each test unit separately,
% determines uncorrected p-values for global null hypothesis (see below)
uRank = uRank + (m >= m1); % part of Eq. 24
% compare actual value at each test unit with maximum across units,
% determines corrected p-values for global null hypothesis (see below)
cRank = cRank + (max(m) >= m1); % Eq. 25 & part of Eq. 26
% calibrate reporting interval to be between 2 and 5 seconds
if (nPermsReport == 1) && (toc(tstart) >= 2)
nPermsReport = 10 ^ floor(log10(j)) * [1 2 5 10];
nPermsReport = min(nPermsReport(nPermsReport >= j));
nPermsReport = max(nPermsReport, 2);
end
% at intervals
if ((nPermsReport > 1) && (mod(j, nPermsReport) == 0)) || (j == P2)
drawnow
stop = ~ishandle(fh);
% compute results,
% based on permutations performed so far: j plays the role of P2
% uncorrected p-values for global null hypothesis
puGN = uRank / j; % part of Eq. 24
% corrected p-values for global null hypothesis
pcGN = cRank / j; % part of Eq. 26
% significant test units for global null hypothesis
sigGN = (pcGN <= alpha);
% * Step 5a: compute p-values for given prevalence bound
% (here specifically gamma0 = 0.5, i.e the majority null hypothesis)
% uncorrected p-values for majority null hypothesis
puMN = ((1 - 0.5) * puGN .^ (1/N) + 0.5) .^ N; % Eq. 19
% corrected p-values for majority null hypothesis
pcMN = pcGN + (1 - pcGN) .* puMN; % Eq. 21
% significant test units for majority null hypothesis
sigMN = (pcMN <= alpha);
% lower bound on corrected p-values for majority null hypothesis
puMNMin = ((1 - 0.5) * 1/j .^ (1/N) + 0.5) .^ N;
pcMNMin = 1/j + (1 - 1/j) .* puMNMin;
% * Step 5b: compute prevalence lower bounds for given alpha
% uncorrected prevalence lower bounds
gamma0u = (alpha .^ (1/N) - puGN .^ (1/N)) ./ (1 - puGN .^ (1/N)); % Eq. 20
gamma0u(alpha < puGN) = nan; % undefined
% corrected prevalence lower bounds
alphac = (alpha - pcGN) ./ (1 - pcGN); % Eq. 22
gamma0c = (alphac .^ (1/N) - puGN .^ (1/N)) ./ (1 - puGN .^ (1/N)); % Eq. 23
gamma0c(puGN > alphac) = nan; % undefined
% upper bound for lower bounds
gamma0uMax = (alpha .^ (1/N) - 1/j .^ (1/N)) ./ (1 - 1/j .^ (1/N));
alphacMax = (alpha - 1/j) / (1 - 1/j); % Eq. 27
gamma0cMax = (alphacMax .^ (1/N) - 1/j .^ (1/N)) ./ (1 - 1/j .^ (1/N)); % Eq. 27
% The criterion for the corrected prevalence lower bound to be
% defined, `puGN <= alphac`, is not equivalent to the significance
% criterion for the GN, `pcGN <= alpha`, but is slightly more
% conservative. A possible disagreement may be detected by
% comparing the lines
% global null hypothesis is rejected
% and
% prevalence bound is defined
% in the diagnostic output. The two numbers should normally be
% identical, but the second one can be smaller.
% print summary
fprintf(' %d of %d permutations\n', j, P2)
fprintf(' minimal rank\n')
fprintf(' uncorrected: %d, reached in %d test units\n', ...
min(uRank), sum(uRank == min(uRank)))
fprintf(' corrected: %d, reached in %d test units\n', ...
min(cRank), sum(cRank == min(cRank)))
fprintf(' minimal p-value for global null hypothesis\n')
fprintf(' uncorrected: %g\n', ...
min(puGN))
fprintf(' corrected: %g\n', ...
min(pcGN))
fprintf(' minimal p-value for majority null hypothesis\n')
fprintf(' uncorrected: %g\n', ...
min(puMN))
fprintf(' corrected: %g\n', ...
min(pcMN))
fprintf(' number of test units (of %d) in which (corrected)\n', V)
fprintf(' global null hypothesis is rejected: %d\n', ...
sum(sigGN))
fprintf(' majority null hypothesis is rejected: %d\n', ...
sum(sigMN))
fprintf(' prevalence bound is defined: %d\n', ...
sum(~isnan(gamma0c)))
fprintf(' largest corrected prevalence bound: %g\n', max(gamma0c))
fprintf('\n')
% graphical display
if stop
fh = figure('Name', 'permutation-based prevalence inference using the minimum statistic');
set(gcf, 'Position', get(gcf, 'Position') .* [1 1 0 0] + [0 0 800 580])
else
% make figure current without getting in the way
set(groot, 'CurrentFigure', fh)
clf
end
% majority null hypothesis p-values, uncorrected
subplot(2, 2, 1)
semilogy([0.5, V + 0.5], alpha * [1 1], 'k')
hold all
plot([0.5, V + 0.5], puMNMin * [1 1], 'r')
plot(puMN, '.b')
title({'p-values majority null hypothesis', 'uncorrected'})
ylabel('p_N(m | \gamma \leq 0.5)')
xdeco
% majority null hypothesis p-values, corrected
subplot(2, 2, 2)
semilogy([0.5, V + 0.5], alpha * [1 1], 'k')
hold all
plot([0.5, V + 0.5], pcMNMin * [1 1], 'r')
plot(pcMN, '.b')
title({'p-values majority null hypothesis', 'corrected'})
ylabel('p^*_N(m | \gamma \leq 0.5)')
xdeco
% prevalence bounds, uncorrected
subplot(2, 2, 3)
plot([0.5, V + 0.5], 0.5 * [1 1], 'k')
hold all
plot([0.5, V + 0.5], gamma0uMax * [1 1], 'r')
plot(gamma0u, 'b.')
title({'prevalence lower bounds', 'uncorrected'})
ylabel('\gamma_0')
ylim([0, 1])
xdeco
% prevalence bounds, corrected
subplot(2, 2, 4)
plot([0.5, V + 0.5], 0.5 * [1 1], 'k')
hold all
plot([0.5, V + 0.5], gamma0cMax * [1 1], 'r')
plot(gamma0c, 'b.')
title({'prevalence lower bounds', 'corrected'})
ylabel('\gamma_0^*')
ylim([0, 1])
xdeco
% progress
if j < P2
annotation(gcf, 'textbox', [0 0 1 1], 'Color', [1 0.65 0], ...
'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', ...
'String', sprintf(' %.0f %% %.1f of %.1f min', ...
j / P2 * 100, toc(tstart) / 60, toc(tstart) / 60 * P2 / j))
end
drawnow
if stop
s = warning('query', 'backtrace');
warning off backtrace
warning('computation has been stopped')
warning(s)
P2 = j;
break
end
end
end
% where majority null hypothesis can be rejected, typical value of test statistic
aTypical = nan(V, 1);
aTypical(sigMN) = median(a(sigMN, :, 1), 2);
% collect return values
params = struct;
params.V = V;
params.N = N;
params.P1 = P1;
params.P2 = P2;
params.alpha = alpha;
params.puMNMin = puMNMin;
params.pcMNMin = pcMNMin;
params.gamma0uMax = gamma0uMax;
params.gamma0cMax = gamma0cMax;
results = struct;
results.puGN = puGN;
results.pcGN = pcGN;
results.puMN = puMN;
results.pcMN = pcMN;
results.gamma0u = gamma0u;
results.gamma0c = gamma0c;
results.aTypical = aTypical;
function xdeco
% common plot x-axis decorations
xlabel('test units (voxels)')
xlim([0.5, V + 0.5])
if V > 200
set(gca, 'XTick', [])
else
set(gca, 'XTick', 1 : V)
if V > 20
set(gca, 'XTickLabel', [])
end
end
end
end