-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_opt.py
178 lines (161 loc) · 9.23 KB
/
baseline_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
try:
import waitGPU
waitGPU.wait(utilization=50, memory_ratio=0.5, available_memory=5000, interval=9, nproc=1, ngpu=1)
except ImportError:
pass
import torch
import torch.nn as nn
import torch.optim as optim
torch.set_default_dtype(torch.float64)
import operator
from functools import reduce
from torch.utils.data import TensorDataset, DataLoader
import numpy as np
import pickle
import time
from setproctitle import setproctitle
import os
import argparse
from utils import my_hash, str_to_bool
import default_args
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def main():
parser = argparse.ArgumentParser(description='baseline_opt')
parser.add_argument('--probType', type=str, default='T2F',
choices=['simple', 'nonconvex', 'acopf57','T2F'], help='problem type')
parser.add_argument('--mode', type=str, default='local_3state',
choices=['local', 'global', 'local_2state','local_3state','global_2state'], help='problem type')
parser.add_argument('--simpleVar', type=int,
help='number of decision vars for simple problem')
parser.add_argument('--simpleIneq', type=int,
help='number of inequality constraints for simple problem')
parser.add_argument('--simpleEq', type=int,
help='number of equality constraints for simple problem')
parser.add_argument('--simpleEx', type=int,
help='total number of datapoints for simple problem')
parser.add_argument('--nonconvexVar', type=int,
help='number of decision vars for nonconvex problem')
parser.add_argument('--nonconvexIneq', type=int,
help='number of inequality constraints for nonconvex problem')
parser.add_argument('--nonconvexEq', type=int,
help='number of equality constraints for nonconvex problem')
parser.add_argument('--nonconvexEx', type=int,
help='total number of datapoints for nonconvex problem')
parser.add_argument('--corrEps', type=float,
help='correction procedure tolerance')
args = parser.parse_args()
args = vars(args) # change to dictionary
defaults = default_args.baseline_opt_default_args(args['probType'])
for key in defaults.keys():
if args[key] is None:
args[key] = defaults[key]
print(args)
setproctitle('baselineOpt-{}'.format(args['probType']))
# Load data, and put on GPU if needed
prob_type = args['probType']
if prob_type == 'T2F':
filepath = os.path.join('datasets', 'T2F', "recon2.2_{}_dataset_var(R){}_ineq(2R){}_eq(M){}_ex(Samples){}".format(
args['mode'], args['simpleVar'], args['simpleIneq'], args['simpleEq'], args['simpleEx']))
elif prob_type == 'simple':
torch.set_default_dtype(torch.float64)
filepath = os.path.join('datasets', 'simple', "random_simple_dataset_var{}_ineq{}_eq{}_ex{}".format(
args['simpleVar'], args['simpleIneq'], args['simpleEq'], args['simpleEx']))
elif prob_type == 'nonconvex':
filepath = os.path.join('datasets', 'nonconvex', "random_nonconvex_dataset_var{}_ineq{}_eq{}_ex{}".format(
args['nonconvexVar'], args['nonconvexIneq'], args['nonconvexEq'], args['nonconvexEx']))
elif prob_type == 'acopf57':
filepath = os.path.join('datasets', 'acopf', 'acopf57_dataset')
else:
raise NotImplementedError
with open(filepath, 'rb') as f:
data = pickle.load(f)
for attr in dir(data):
var = getattr(data, attr)
if not callable(var) and not attr.startswith("__") and torch.is_tensor(var):
try:
setattr(data, attr, var.to(DEVICE))
except AttributeError:
pass
data._device = DEVICE
## Run pure optimization baselines
if prob_type == 'T2F':
solvers=['osqp']
elif prob_type == 'simple':
solvers = ['osqp', 'qpth']
elif prob_type == 'nonconvex':
solvers = ['ipopt']
else:
solvers = ['pypower']
for solver in solvers:
save_dir = os.path.join('results', str(data), 'baselineOpt-{}'.format(solver),
'run', str(time.time()).replace('.', '-'))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
Yvalid_opt, valid_time_total, valid_time_parallel = data.opt_solve(data.validX, solver_type=solver, tol=args['corrEps'])
Ytest_opt, test_time_total, test_time_parallel = data.opt_solve(data.testX, solver_type=solver, tol=args['corrEps'])
opt_results = get_opt_results(data, args, torch.tensor(Yvalid_opt).to(DEVICE),
torch.tensor(Ytest_opt).to(DEVICE))
opt_results.update(
dict([('test_time', test_time_parallel), ('valid_time', valid_time_parallel), ('train_time', 0),
('test_time_total', test_time_total), ('valid_time_total', valid_time_total), ('train_time_total', 0)]))
with open(os.path.join(save_dir, 'results.dict'), 'wb') as f:
pickle.dump(opt_results, f)
def get_opt_results(data, args, Yvalid, Ytest, Yvalid_precorr=None, Ytest_precorr=None):
eps_converge = args['corrEps']
results = {}
results['Y_valid_pred']=Yvalid.detach().cpu().numpy()
results['Y_test_pred']=Ytest.detach().cpu().numpy()
results['valid_eval'] = data.obj_fn(Yvalid).detach().cpu().numpy()
results['valid_ineq_max'] = torch.max(data.ineq_dist(data.validX, Yvalid,mode="valid"), dim=1)[0].detach().cpu().numpy()
results['valid_ineq_mean'] = torch.mean(data.ineq_dist(data.validX, Yvalid, mode='valid'), dim=1).detach().cpu().numpy()
results['valid_ineq_num_viol_0'] = torch.sum(data.ineq_dist(data.validX, Yvalid , mode='valid') > eps_converge,
dim=1).detach().cpu().numpy()
results['valid_ineq_num_viol_1'] = torch.sum(data.ineq_dist(data.validX, Yvalid, mode='valid') > 10 * eps_converge,
dim=1).detach().cpu().numpy()
results['valid_ineq_num_viol_2'] = torch.sum(data.ineq_dist(data.validX, Yvalid, mode='valid') > 100 * eps_converge,
dim=1).detach().cpu().numpy()
results['valid_eq_max'] = torch.max(torch.abs(data.eq_resid(data.validX, Yvalid)), dim=1)[0].detach().cpu().numpy()
results['valid_eq_mean'] = torch.mean(torch.abs(data.eq_resid(data.validX, Yvalid)),
dim=1).detach().cpu().numpy()
results['valid_eq_num_viol_0'] = torch.sum(torch.abs(data.eq_resid(data.validX, Yvalid)) > eps_converge,
dim=1).detach().cpu().numpy()
results['valid_eq_num_viol_1'] = torch.sum(torch.abs(data.eq_resid(data.validX, Yvalid)) > 10 * eps_converge,
dim=1).detach().cpu().numpy()
results['valid_eq_num_viol_2'] = torch.sum(torch.abs(data.eq_resid(data.validX, Yvalid)) > 100 * eps_converge,
dim=1).detach().cpu().numpy()
if Yvalid_precorr is not None:
results['valid_correction_dist'] = torch.norm(Yvalid - Yvalid_precorr, dim=1).detach().cpu().numpy()
results['test_eval'] = data.obj_fn(Ytest).detach().cpu().numpy()
results['test_ineq_max'] = torch.max(data.ineq_dist(data.testX, Ytest, mode='test'), dim=1)[0].detach().cpu().numpy()
results['test_ineq_mean'] = torch.mean(data.ineq_dist(data.testX, Ytest, mode='test'), dim=1).detach().cpu().numpy()
results['test_ineq_num_viol_0'] = torch.sum(data.ineq_dist(data.testX, Ytest, mode='test') > eps_converge,
dim=1).detach().cpu().numpy()
results['test_ineq_num_viol_1'] = torch.sum(data.ineq_dist(data.testX, Ytest, mode='test') > 10 * eps_converge,
dim=1).detach().cpu().numpy()
results['test_ineq_num_viol_2'] = torch.sum(data.ineq_dist(data.testX, Ytest, mode='test') > 100 * eps_converge,
dim=1).detach().cpu().numpy()
results['test_eq_max'] = torch.max(torch.abs(data.eq_resid(data.testX, Ytest)), dim=1)[0].detach().cpu().numpy()
results['test_eq_mean'] = torch.mean(torch.abs(data.eq_resid(data.testX, Ytest)),
dim=1).detach().cpu().numpy()
results['test_eq_num_viol_0'] = torch.sum(torch.abs(data.eq_resid(data.testX, Ytest)) > eps_converge,
dim=1).detach().cpu().numpy()
results['test_eq_num_viol_1'] = torch.sum(torch.abs(data.eq_resid(data.testX, Ytest)) > 10 * eps_converge,
dim=1).detach().cpu().numpy()
results['test_eq_num_viol_2'] = torch.sum(torch.abs(data.eq_resid(data.testX, Ytest)) > 100 * eps_converge,
dim=1).detach().cpu().numpy()
if Ytest_precorr is not None:
results['test_correction_dist'] = torch.norm(Ytest - Ytest_precorr, dim=1).detach().cpu().numpy()
return results
# Modifies stats in place
def dict_agg(stats, key, value, op='concat'):
if key in stats.keys():
if op == 'sum':
stats[key] += value
elif op == 'concat':
stats[key] = np.concatenate((stats[key], value), axis=0)
else:
raise NotImplementedError
else:
stats[key] = value
if __name__=='__main__':
main()