forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontacts.py
394 lines (349 loc) · 15.6 KB
/
contacts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Lint as: python3.
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code to run distogram inference."""
import collections
import os
import time
from absl import app
from absl import flags
from absl import logging
import numpy as np
import six
import sonnet as snt
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from alphafold_casp13 import config_dict
from alphafold_casp13 import contacts_experiment
from alphafold_casp13 import distogram_io
from alphafold_casp13 import secstruct
flags.DEFINE_string('config_path', None, 'Path of the JSON config file.')
flags.DEFINE_string('checkpoint_path', None, 'Checkpoint path for evaluation.')
flags.DEFINE_boolean('cpu', False, 'Force onto CPU.')
flags.DEFINE_string('output_path', None,
'Base path where all output files will be saved to.')
flags.DEFINE_string('eval_sstable', None,
'Path of the SSTable to read the input tf.Examples from.')
flags.DEFINE_string('stats_file', None,
'Path of the statistics file to use for normalization.')
FLAGS = flags.FLAGS
# A named tuple to store the outputs of a single prediction run.
Prediction = collections.namedtuple(
'Prediction', [
'single_message', # A debugging message.
'num_crops_local', # The number of crops used to make this prediction.
'sequence', # The amino acid sequence.
'filebase', # The chain name. All output files will use this name.
'softmax_probs', # Softmax of the distogram.
'ss', # Secondary structure prediction.
'asa', # ASA prediction.
'torsions', # Torsion prediction.
])
def evaluate(crop_size_x, crop_size_y, feature_normalization, checkpoint_path,
normalization_exclusion, eval_config, network_config):
"""Main evaluation loop."""
experiment = contacts_experiment.Contacts(
tfrecord=eval_config.eval_sstable,
stats_file=eval_config.stats_file,
network_config=network_config,
crop_size_x=crop_size_x,
crop_size_y=crop_size_y,
feature_normalization=feature_normalization,
normalization_exclusion=normalization_exclusion)
checkpoint = snt.get_saver(experiment.model, collections=[
tf.GraphKeys.GLOBAL_VARIABLES,
tf.GraphKeys.MOVING_AVERAGE_VARIABLES])
with tf.train.SingularMonitoredSession(hooks=[]) as sess:
logging.info('Restoring from checkpoint %s', checkpoint_path)
checkpoint.restore(sess, checkpoint_path)
logging.info('Writing output to %s', eval_config.output_path)
eval_begin_time = time.time()
_run_evaluation(sess=sess,
experiment=experiment,
eval_config=eval_config,
output_dir=eval_config.output_path,
min_range=network_config.min_range,
max_range=network_config.max_range,
num_bins=network_config.num_bins,
torsion_bins=network_config.torsion_bins)
logging.info('Finished eval %.1fs', (time.time() - eval_begin_time))
def _run_evaluation(
sess, experiment, eval_config, output_dir, min_range, max_range, num_bins,
torsion_bins):
"""Evaluate a contact map by aggregating crops.
Args:
sess: A tf.train.Session.
experiment: An experiment class.
eval_config: A config dict of eval parameters.
output_dir: Directory to save the predictions to.
min_range: The minimum range in Angstroms to consider in distograms.
max_range: The maximum range in Angstroms to consider in distograms, see
num_bins below for clarification.
num_bins: The number of bins in the distance histogram being predicted.
We divide the min_range--(min_range + max_range) Angstrom range into this
many bins.
torsion_bins: The number of bins the torsion angles are discretised into.
"""
tf.io.gfile.makedirs(os.path.join(output_dir, 'pickle_files'))
logging.info('Eval config is %s\nnum_bins: %d', eval_config, num_bins)
num_examples = 0
num_crops = 0
start_all_time = time.time()
# Either do the whole test set, or up to a specified limit.
max_examples = experiment.num_eval_examples
if eval_config.max_num_examples > 0:
max_examples = min(max_examples, eval_config.max_num_examples)
while num_examples < max_examples:
one_prediction = compute_one_prediction(
num_examples, experiment, sess, eval_config, num_bins, torsion_bins)
single_message = one_prediction.single_message
num_crops_local = one_prediction.num_crops_local
sequence = one_prediction.sequence
filebase = one_prediction.filebase
softmax_probs = one_prediction.softmax_probs
ss = one_prediction.ss
asa = one_prediction.asa
torsions = one_prediction.torsions
num_examples += 1
num_crops += num_crops_local
# Save the output files.
filename = os.path.join(output_dir,
'pickle_files', '%s.pickle' % filebase)
distogram_io.save_distance_histogram(
filename, softmax_probs, filebase, sequence,
min_range=min_range, max_range=max_range, num_bins=num_bins)
if experiment.model.torsion_multiplier > 0:
torsions_dir = os.path.join(output_dir, 'torsions')
tf.io.gfile.makedirs(torsions_dir)
distogram_io.save_torsions(torsions_dir, filebase, sequence, torsions)
if experiment.model.secstruct_multiplier > 0:
ss_dir = os.path.join(output_dir, 'secstruct')
tf.io.gfile.makedirs(ss_dir)
secstruct.save_secstructs(ss_dir, filebase, None, sequence, ss)
if experiment.model.asa_multiplier > 0:
asa_dir = os.path.join(output_dir, 'asa')
tf.io.gfile.makedirs(asa_dir)
secstruct.save_secstructs(asa_dir, filebase, None, sequence,
np.expand_dims(asa, 1), label='Deepmind 2D ASA')
time_spent = time.time() - start_all_time
logging.info(
'Evaluate %d examples, %d crops %.1f crops/ex. '
'Took %.1fs, %.3f s/example %.3f crops/s\n%s',
num_examples, num_crops, num_crops / float(num_examples), time_spent,
time_spent / num_examples, num_crops / time_spent, single_message)
logging.info('Tested on %d', num_examples)
def compute_one_prediction(
num_examples, experiment, sess, eval_config, num_bins, torsion_bins):
"""Find the contact map for a single domain."""
num_crops_local = 0
debug_steps = 0
start = time.time()
output_fetches = {'probs': experiment.eval_probs}
output_fetches['softmax_probs'] = experiment.eval_probs_softmax
# Add the auxiliary outputs if present.
experiment.model.update_crop_fetches(output_fetches)
# Get data.
batch = experiment.get_one_example(sess)
length = batch['sequence_lengths'][0]
batch_size = batch['sequence_lengths'].shape[0]
domain = batch['domain_name'][0][0].decode('utf-8')
chain = batch['chain_name'][0][0].decode('utf-8')
filebase = domain or chain
sequence = six.ensure_str(batch['sequences'][0][0])
logging.info('SepWorking on %d %s %s %d', num_examples, domain, chain, length)
inputs_1d = batch['inputs_1d']
if 'residue_index' in batch:
logging.info('Getting residue_index from features')
residue_index = np.squeeze(
batch['residue_index'], axis=2).astype(np.int32)
else:
logging.info('Generating residue_index')
residue_index = np.tile(np.expand_dims(
np.arange(length, dtype=np.int32), 0), [batch_size, 1])
assert batch_size == 1
num_examples += batch_size
# Crops.
prob_accum = np.zeros((length, length, 2))
ss_accum = np.zeros((length, 8))
torsions_accum = np.zeros((length, torsion_bins**2))
asa_accum = np.zeros((length,))
weights_1d_accum = np.zeros((length,))
softmax_prob_accum = np.zeros((length, length, num_bins), dtype=np.float32)
crop_size_x = experiment.crop_size_x
crop_step_x = crop_size_x // eval_config.crop_shingle_x
crop_size_y = experiment.crop_size_y
crop_step_y = crop_size_y // eval_config.crop_shingle_y
prob_weights = 1
if eval_config.pyramid_weights > 0:
sx = np.expand_dims(np.linspace(1.0 / crop_size_x, 1, crop_size_x), 1)
sy = np.expand_dims(np.linspace(1.0 / crop_size_y, 1, crop_size_y), 0)
prob_weights = np.minimum(np.minimum(sx, np.flipud(sx)),
np.minimum(sy, np.fliplr(sy)))
prob_weights /= np.max(prob_weights)
prob_weights = np.minimum(prob_weights, eval_config.pyramid_weights)
logging.log_first_n(logging.INFO, 'Crop: %dx%d step %d,%d pyr %.2f',
debug_steps,
crop_size_x, crop_size_y,
crop_step_x, crop_step_y, eval_config.pyramid_weights)
# Accumulate all crops, starting and ending half off the square.
for i in range(-crop_size_x // 2, length - crop_size_x // 2, crop_step_x):
for j in range(-crop_size_y // 2, length - crop_size_y // 2, crop_step_y):
# The ideal crop.
patch = compute_one_patch(
sess, experiment, output_fetches, inputs_1d, residue_index,
prob_weights, batch, length, i, j, crop_size_x, crop_size_y)
# Assemble the crops into a final complete prediction.
ic = max(0, i)
jc = max(0, j)
ic_to = ic + patch['prob'].shape[1]
jc_to = jc + patch['prob'].shape[0]
prob_accum[jc:jc_to, ic:ic_to, 0] += patch['prob'] * patch['weight']
prob_accum[jc:jc_to, ic:ic_to, 1] += patch['weight']
softmax_prob_accum[jc:jc_to, ic:ic_to, :] += (
patch['softmax'] * np.expand_dims(patch['weight'], 2))
weights_1d_accum[jc:jc_to] += 1
weights_1d_accum[ic:ic_to] += 1
if 'asa_x' in patch:
asa_accum[ic:ic + patch['asa_x'].shape[0]] += np.squeeze(
patch['asa_x'], axis=1)
asa_accum[jc:jc + patch['asa_y'].shape[0]] += np.squeeze(
patch['asa_y'], axis=1)
if 'ss_x' in patch:
ss_accum[ic:ic + patch['ss_x'].shape[0]] += patch['ss_x']
ss_accum[jc:jc + patch['ss_y'].shape[0]] += patch['ss_y']
if 'torsions_x' in patch:
torsions_accum[
ic:ic + patch['torsions_x'].shape[0]] += patch['torsions_x']
torsions_accum[
jc:jc + patch['torsions_y'].shape[0]] += patch['torsions_y']
num_crops_local += 1
single_message = (
'Constructed %s len %d from %d chunks [%d, %d x %d, %d] '
'in %5.1fs' % (
filebase, length, num_crops_local,
crop_size_x, crop_step_x, crop_size_y, crop_step_y,
time.time() - start))
logging.info(single_message)
logging.info('prob_accum[:, :, 1]: %s', prob_accum[:, :, 1])
assert (prob_accum[:, :, 1] > 0.0).all()
probs = prob_accum[:, :, 0] / prob_accum[:, :, 1]
softmax_probs = softmax_prob_accum[:, :, :] / prob_accum[:, :, 1:2]
asa_accum /= weights_1d_accum
ss_accum /= np.expand_dims(weights_1d_accum, 1)
torsions_accum /= np.expand_dims(weights_1d_accum, 1)
# The probs are symmetrical.
probs = (probs + probs.transpose()) / 2
if num_bins > 1:
softmax_probs = (softmax_probs + np.transpose(
softmax_probs, axes=[1, 0, 2])) / 2
return Prediction(
single_message=single_message,
num_crops_local=num_crops_local,
sequence=sequence,
filebase=filebase,
softmax_probs=softmax_probs,
ss=ss_accum,
asa=asa_accum,
torsions=torsions_accum)
def compute_one_patch(sess, experiment, output_fetches, inputs_1d,
residue_index, prob_weights, batch, length, i, j,
crop_size_x, crop_size_y):
"""Compute the output predictions for a single crop."""
# Note that these are allowed to go off the end of the protein.
end_x = i + crop_size_x
end_y = j + crop_size_y
crop_limits = np.array([[i, end_x, j, end_y]], dtype=np.int32)
ic = max(0, i)
jc = max(0, j)
end_x_cropped = min(length, end_x)
end_y_cropped = min(length, end_y)
prepad_x = max(0, -i)
prepad_y = max(0, -j)
postpad_x = end_x - end_x_cropped
postpad_y = end_y - end_y_cropped
# Precrop the 2D features:
inputs_2d = np.pad(batch['inputs_2d'][
:, jc:end_y, ic:end_x, :],
[[0, 0],
[prepad_y, postpad_y],
[prepad_x, postpad_x],
[0, 0]], mode='constant')
assert inputs_2d.shape[1] == crop_size_y
assert inputs_2d.shape[2] == crop_size_x
# Generate the corresponding crop, but it might be truncated.
cxx = batch['inputs_2d'][:, ic:end_x, ic:end_x, :]
cyy = batch['inputs_2d'][:, jc:end_y, jc:end_y, :]
if cxx.shape[1] < inputs_2d.shape[1]:
cxx = np.pad(cxx, [[0, 0],
[prepad_x, max(0, i + crop_size_y - length)],
[prepad_x, postpad_x],
[0, 0]], mode='constant')
assert cxx.shape[1] == crop_size_y
assert cxx.shape[2] == crop_size_x
if cyy.shape[2] < inputs_2d.shape[2]:
cyy = np.pad(cyy, [[0, 0],
[prepad_y, postpad_y],
[prepad_y, max(0, j + crop_size_x - length)],
[0, 0]], mode='constant')
assert cyy.shape[1] == crop_size_y
assert cyy.shape[2] == crop_size_x
inputs_2d = np.concatenate([inputs_2d, cxx, cyy], 3)
output_results = sess.run(output_fetches, feed_dict={
experiment.inputs_1d_placeholder: inputs_1d,
experiment.residue_index_placeholder: residue_index,
experiment.inputs_2d_placeholder: inputs_2d,
experiment.crop_placeholder: crop_limits,
})
# Crop out the "live" region of the probs.
prob_patch = output_results['probs'][
0, prepad_y:crop_size_y - postpad_y,
prepad_x:crop_size_x - postpad_x]
weight_patch = prob_weights[prepad_y:crop_size_y - postpad_y,
prepad_x:crop_size_x - postpad_x]
patch = {'prob': prob_patch, 'weight': weight_patch}
if 'softmax_probs' in output_results:
patch['softmax'] = output_results['softmax_probs'][
0, prepad_y:crop_size_y - postpad_y,
prepad_x:crop_size_x - postpad_x]
if 'secstruct_probs' in output_results:
patch['ss_x'] = output_results['secstruct_probs'][
0, prepad_x:crop_size_x - postpad_x]
patch['ss_y'] = output_results['secstruct_probs'][
0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y]
if 'torsion_probs' in output_results:
patch['torsions_x'] = output_results['torsion_probs'][
0, prepad_x:crop_size_x - postpad_x]
patch['torsions_y'] = output_results['torsion_probs'][
0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y]
if 'asa_output' in output_results:
patch['asa_x'] = output_results['asa_output'][
0, prepad_x:crop_size_x - postpad_x]
patch['asa_y'] = output_results['asa_output'][
0, crop_size_x + prepad_y:crop_size_x + crop_size_y - postpad_y]
return patch
def main(argv):
del argv # Unused.
logging.info('Loading a JSON config from: %s', FLAGS.config_path)
with tf.io.gfile.GFile(FLAGS.config_path, 'r') as f:
config = config_dict.ConfigDict.from_json(f.read())
# Redefine the relevant output fields.
if FLAGS.eval_sstable:
config.eval_config.eval_sstable = FLAGS.eval_sstable
if FLAGS.stats_file:
config.eval_config.stats_file = FLAGS.stats_file
if FLAGS.output_path:
config.eval_config.output_path = FLAGS.output_path
with tf.device('/cpu:0' if FLAGS.cpu else None):
evaluate(checkpoint_path=FLAGS.checkpoint_path, **config)
if __name__ == '__main__':
app.run(main)