forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistogram_io.py
98 lines (82 loc) · 3.57 KB
/
distogram_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Lint as: python3.
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Write contact map predictions to a tf.io.gfile.
Either write a binary contact map as an RR format text file, or a
histogram prediction as a pickle of a dict containing a numpy array.
"""
import os
import numpy as np
import six.moves.cPickle as pickle
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
RR_FORMAT = """PFRMAT RR
TARGET {}
AUTHOR DM-ORIGAMI-TEAM
METHOD {}
MODEL 1
{}
"""
def save_rr_file(filename, probs, domain, sequence,
method='dm-contacts-resnet'):
"""Save a contact probability matrix as an RR file."""
assert len(sequence) == probs.shape[0]
assert len(sequence) == probs.shape[1]
with tf.io.gfile.GFile(filename, 'w') as f:
f.write(RR_FORMAT.format(domain, method, sequence))
for i in range(probs.shape[0]):
for j in range(i + 1, probs.shape[1]):
f.write('{:d} {:d} {:d} {:d} {:f}\n'.format(
i + 1, j + 1, 0, 8, probs[j, i]))
f.write('END\n')
def save_torsions(torsions_dir, filebase, sequence, torsions_probs):
"""Save Torsions to a file as pickle of a dict."""
filename = os.path.join(torsions_dir, filebase + '.torsions')
t_dict = dict(probs=torsions_probs, sequence=sequence)
with tf.io.gfile.GFile(filename, 'w') as fh:
pickle.dump(t_dict, fh, protocol=2)
def save_distance_histogram(
filename, probs, domain, sequence, min_range, max_range, num_bins):
"""Save a distance histogram prediction matrix as a pickle file."""
dh_dict = {
'min_range': min_range,
'max_range': max_range,
'num_bins': num_bins,
'domain': domain,
'sequence': sequence,
'probs': probs.astype(np.float32)}
save_distance_histogram_from_dict(filename, dh_dict)
def save_distance_histogram_from_dict(filename, dh_dict):
"""Save a distance histogram prediction matrix as a pickle file."""
fields = ['min_range', 'max_range', 'num_bins', 'domain', 'sequence', 'probs']
missing_fields = [f for f in fields if f not in dh_dict]
assert not missing_fields, 'Fields {} missing from dictionary'.format(
missing_fields)
assert len(dh_dict['sequence']) == dh_dict['probs'].shape[0]
assert len(dh_dict['sequence']) == dh_dict['probs'].shape[1]
assert dh_dict['num_bins'] == dh_dict['probs'].shape[2]
assert dh_dict['min_range'] >= 0.0
assert dh_dict['max_range'] > 0.0
with tf.io.gfile.GFile(filename, 'wb') as fw:
pickle.dump(dh_dict, fw, protocol=2)
def contact_map_from_distogram(distogram_dict):
"""Split the boundary bin."""
num_bins = distogram_dict['probs'].shape[-1]
bin_size_angstrom = distogram_dict['max_range'] / num_bins
threshold_cts = (8.0 - distogram_dict['min_range']) / bin_size_angstrom
threshold_bin = int(threshold_cts) # Round down
pred_contacts = np.sum(distogram_dict['probs'][:, :, :threshold_bin], axis=-1)
if threshold_bin < threshold_cts: # Add on the fraction of the boundary bin.
pred_contacts += distogram_dict['probs'][:, :, threshold_bin] * (
threshold_cts - threshold_bin)
return pred_contacts