forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwarehouse.py
681 lines (587 loc) · 26.3 KB
/
warehouse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A prop-carry task that transition between multiple phases."""
import collections
import colorsys
import enum
from absl import logging
from dm_control import composer
from dm_control import mjcf
from dm_control.composer.observation import observable
from dm_control.locomotion.arenas import floors
from dm_control.locomotion.mocap import loader as mocap_loader
from dm_control.mujoco.wrapper import mjbindings
import numpy as np
from catch_carry import arm_opener
from catch_carry import mocap_data
from catch_carry import props
from catch_carry import trajectories
_PHYSICS_TIMESTEP = 0.005
# Maximum number of physics steps to run when settling props onto pedestals
# during episode initialization.
_MAX_SETTLE_STEPS = 1000
# Maximum velocity for prop to be considered settled.
# Used during episode initialization only.
_SETTLE_QVEL_TOL = 1e-5
# Magnitude of the sparse reward.
_SPARSE_REWARD = 1.0
# Maximum distance for walkers to be considered to be "near" a pedestal/target.
_TARGET_TOL = 0.65
# Defines how pedestals are placed around the arena.
# Pedestals are placed at constant angle intervals around the arena's center.
_BASE_PEDESTAL_DIST = 3 # Base distance from center.
_PEDESTAL_DIST_DELTA = 0.5 # Maximum variation on the base distance.
# Base hue-luminosity-saturation of the pedestal colors.
# We rotate through the hue for each pedestal created in the environment.
_BASE_PEDESTAL_H = 0.1
_BASE_PEDESTAL_L = 0.3
_BASE_PEDESTAL_S = 0.7
# Pedestal luminosity when active.
_ACTIVATED_PEDESTAL_L = 0.8
_PEDESTAL_SIZE = (0.2, 0.2, 0.02)
_SINGLE_PEDESTAL_COLOR = colorsys.hls_to_rgb(.3, .15, .35) + (1.0,)
WALKER_PEDESTAL = 'walker_pedestal'
WALKER_PROP = 'walker_prop'
PROP_PEDESTAL = 'prop_pedestal'
TARGET_STATE = 'target_state/'
CURRENT_STATE = 'meta/current_state/'
def _is_same_state(state_1, state_2):
if state_1.keys() != state_2.keys():
return False
for k in state_1:
if not np.all(state_1[k] == state_2[k]):
return False
return True
def _singleton_or_none(iterable):
iterator = iter(iterable)
try:
return next(iterator)
except StopIteration:
return None
def _generate_pedestal_colors(num_pedestals):
"""Function to get colors for pedestals."""
colors = []
for i in range(num_pedestals):
h = _BASE_PEDESTAL_H + i / num_pedestals
while h > 1:
h -= 1
colors.append(
colorsys.hls_to_rgb(h, _BASE_PEDESTAL_L, _BASE_PEDESTAL_S) + (1.0,))
return colors
InitializationParameters = collections.namedtuple(
'InitializationParameters', ('clip_segment', 'prop_id', 'pedestal_id'))
def _rotate_vector_by_quaternion(vec, quat):
result = np.empty(3)
mjbindings.mjlib.mju_rotVecQuat(result, np.asarray(vec), np.asarray(quat))
return result
@enum.unique
class WarehousePhase(enum.Enum):
TERMINATED = 0
GOTOTARGET = 1
PICKUP = 2
CARRYTOTARGET = 3
PUTDOWN = 4
def _find_random_free_pedestal_id(target_state, random_state):
free_pedestals = (
np.where(np.logical_not(np.any(target_state, axis=0)))[0])
return random_state.choice(free_pedestals)
def _find_random_occupied_pedestal_id(target_state, random_state):
occupied_pedestals = (
np.where(np.any(target_state, axis=0))[0])
return random_state.choice(occupied_pedestals)
def one_hot(values, num_unique):
return np.squeeze(np.eye(num_unique)[np.array(values).reshape(-1)])
class SinglePropFourPhases(object):
"""A phase manager that transitions between four phases for a single prop."""
def __init__(self, fixed_initialization_phase=None):
self._phase = WarehousePhase.TERMINATED
self._fixed_initialization_phase = fixed_initialization_phase
def initialize_episode(self, target_state, random_state):
"""Randomly initializes an episode into one of the four phases."""
if self._fixed_initialization_phase is None:
self._phase = random_state.choice([
WarehousePhase.GOTOTARGET, WarehousePhase.PICKUP,
WarehousePhase.CARRYTOTARGET, WarehousePhase.PUTDOWN
])
else:
self._phase = self._fixed_initialization_phase
self._prop_id = random_state.randint(len(target_state[PROP_PEDESTAL]))
self._pedestal_id = np.nonzero(
target_state[PROP_PEDESTAL][self._prop_id])[0][0]
pedestal_id_for_initialization = self._pedestal_id
if self._phase == WarehousePhase.GOTOTARGET:
clip_segment = trajectories.ClipSegment.APPROACH
target_state[WALKER_PROP][:] = 0
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
elif self._phase == WarehousePhase.PICKUP:
clip_segment = trajectories.ClipSegment.PICKUP
target_state[WALKER_PROP][self._prop_id] = 1
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
# Set self._pedestal_id to the next pedestal after pickup is successful.
self._pedestal_id = _find_random_free_pedestal_id(
target_state[PROP_PEDESTAL], random_state)
target_state[PROP_PEDESTAL][self._prop_id, :] = 0
elif self._phase == WarehousePhase.CARRYTOTARGET:
clip_segment = random_state.choice([
trajectories.ClipSegment.CARRY1, trajectories.ClipSegment.CARRY2])
self._pedestal_id = _find_random_free_pedestal_id(
target_state[PROP_PEDESTAL], random_state)
if clip_segment == trajectories.ClipSegment.CARRY2:
pedestal_id_for_initialization = self._pedestal_id
target_state[WALKER_PROP][self._prop_id] = 1
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
target_state[PROP_PEDESTAL][self._prop_id, :] = 0
elif self._phase == WarehousePhase.PUTDOWN:
clip_segment = trajectories.ClipSegment.PUTDOWN
target_state[WALKER_PROP][:] = 0
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
return InitializationParameters(
clip_segment, self._prop_id, pedestal_id_for_initialization)
def on_success(self, target_state, random_state):
"""Transitions into the next phase upon success of current phase."""
if self._phase == WarehousePhase.GOTOTARGET:
if self._prop_id is not None:
self._phase = WarehousePhase.PICKUP
# Set self._pedestal_id to the next pedestal after pickup is successful.
self._pedestal_id = (
_find_random_free_pedestal_id(
target_state[PROP_PEDESTAL], random_state))
target_state[WALKER_PROP][self._prop_id] = 1
target_state[PROP_PEDESTAL][self._prop_id, :] = 0
else:
# If you go to an empty pedestal, go to pedestal with a prop.
self._pedestal_id = (
_find_random_occupied_pedestal_id(
target_state[PROP_PEDESTAL], random_state))
target_state[WALKER_PEDESTAL][:] = 0
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
self._prop_id = np.argwhere(
target_state[PROP_PEDESTAL][:, self._pedestal_id])[0, 0]
elif self._phase == WarehousePhase.PICKUP:
self._phase = WarehousePhase.CARRYTOTARGET
target_state[WALKER_PEDESTAL][:] = 0
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
elif self._phase == WarehousePhase.CARRYTOTARGET:
self._phase = WarehousePhase.PUTDOWN
target_state[WALKER_PROP][:] = 0
target_state[PROP_PEDESTAL][self._prop_id, self._pedestal_id] = 1
elif self._phase == WarehousePhase.PUTDOWN:
self._phase = WarehousePhase.GOTOTARGET
# Set self._pedestal_id to the next pedestal after putdown is successful.
self._pedestal_id = (
_find_random_free_pedestal_id(
target_state[PROP_PEDESTAL], random_state))
self._prop_id = None
target_state[WALKER_PEDESTAL][:] = 0
target_state[WALKER_PEDESTAL][self._pedestal_id] = 1
return self._phase
@property
def phase(self):
return self._phase
@property
def prop_id(self):
return self._prop_id
@property
def pedestal_id(self):
return self._pedestal_id
class PhasedBoxCarry(composer.Task):
"""A prop-carry task that transitions between multiple phases."""
def __init__(
self,
walker,
num_props,
num_pedestals,
proto_modifier=None,
transition_class=SinglePropFourPhases,
min_prop_gap=0.05,
pedestal_height_range=(0.45, 0.75),
log_transitions=False,
negative_reward_on_failure_termination=True,
use_single_pedestal_color=True,
priority_friction=False,
fixed_initialization_phase=None):
"""Initialize phased/instructed box-carrying ("warehouse") task.
Args:
walker: the walker to be used in this task.
num_props: the number of props in the task scene.
num_pedestals: the number of floating shelves (pedestals) in the task
scene.
proto_modifier: function to modify trajectory proto.
transition_class: the object that handles the transition logic.
min_prop_gap: arms are automatically opened to leave a gap around the prop
to avoid problematic collisions upon initialization.
pedestal_height_range: range of heights for the pedestal.
log_transitions: logging/printing of transitions.
negative_reward_on_failure_termination: boolean for whether to provide
negative sparse rewards on failure termination.
use_single_pedestal_color: boolean option for pedestals being the same
color or different colors.
priority_friction: sets friction priority thereby making prop objects have
higher friction.
fixed_initialization_phase: an instance of the `WarehousePhase` enum that
specifies the phase in which to always initialize the task, or `None` if
the initial task phase should be chosen randomly for each episode.
"""
self._num_props = num_props
self._num_pedestals = num_pedestals
self._proto_modifier = proto_modifier
self._transition_manager = transition_class(
fixed_initialization_phase=fixed_initialization_phase)
self._min_prop_gap = min_prop_gap
self._pedestal_height_range = pedestal_height_range
self._log_transitions = log_transitions
self._target_state = collections.OrderedDict([
(WALKER_PEDESTAL, np.zeros(num_pedestals)),
(WALKER_PROP, np.zeros(num_props)),
(PROP_PEDESTAL, np.zeros([num_props, num_pedestals]))
])
self._current_state = collections.OrderedDict([
(WALKER_PEDESTAL, np.zeros(num_pedestals)),
(WALKER_PROP, np.zeros(num_props)),
(PROP_PEDESTAL, np.zeros([num_props, num_pedestals]))
])
self._negative_reward_on_failure_termination = (
negative_reward_on_failure_termination)
self._priority_friction = priority_friction
clips = sorted(
set(mocap_data.medium_pedestal())
& (set(mocap_data.small_box()) | set(mocap_data.large_box())))
loader = mocap_loader.HDF5TrajectoryLoader(
mocap_data.H5_PATH, trajectories.SinglePropCarrySegmentedTrajectory)
self._trajectories = [
loader.get_trajectory(clip.clip_identifier) for clip in clips]
self._arena = floors.Floor()
self._walker = walker
self._feet_geoms = (
walker.mjcf_model.find('body', 'lfoot').find_all('geom') +
walker.mjcf_model.find('body', 'rfoot').find_all('geom'))
self._lhand_geoms = (
walker.mjcf_model.find('body', 'lhand').find_all('geom'))
self._rhand_geoms = (
walker.mjcf_model.find('body', 'rhand').find_all('geom'))
self._trajectories[0].configure_walkers([self._walker])
walker.create_root_joints(self._arena.attach(walker))
control_timestep = self._trajectories[0].dt
for i, trajectory in enumerate(self._trajectories):
if trajectory.dt != control_timestep:
raise ValueError(
'Inconsistent control timestep: '
'trajectories[{}].dt == {} but trajectories[0].dt == {}'
.format(i, trajectory.dt, control_timestep))
self.set_timesteps(control_timestep, _PHYSICS_TIMESTEP)
if use_single_pedestal_color:
self._pedestal_colors = [_SINGLE_PEDESTAL_COLOR] * num_pedestals
else:
self._pedestal_colors = _generate_pedestal_colors(num_pedestals)
self._pedestals = [props.Pedestal(_PEDESTAL_SIZE, rgba)
for rgba in self._pedestal_colors]
for pedestal in self._pedestals:
self._arena.attach(pedestal)
self._props = [
self._trajectories[0].create_props(
priority_friction=self._priority_friction)[0]
for _ in range(num_props)
]
for prop in self._props:
self._arena.add_free_entity(prop)
self._task_observables = collections.OrderedDict()
self._task_observables['target_phase'] = observable.Generic(
lambda _: one_hot(self._transition_manager.phase.value, num_unique=5))
def ego_prop_xpos(physics):
prop_id = self._focal_prop_id
if prop_id is None:
return np.zeros((3,))
prop = self._props[prop_id]
prop_xpos, _ = prop.get_pose(physics)
walker_xpos = physics.bind(self._walker.root_body).xpos
return self._walker.transform_vec_to_egocentric_frame(
physics, prop_xpos - walker_xpos)
self._task_observables['target_prop/xpos'] = (
observable.Generic(ego_prop_xpos))
def prop_zaxis(physics):
prop_id = self._focal_prop_id
if prop_id is None:
return np.zeros((3,))
prop = self._props[prop_id]
prop_xmat = physics.bind(
mjcf.get_attachment_frame(prop.mjcf_model)).xmat
return prop_xmat[[2, 5, 8]]
self._task_observables['target_prop/zaxis'] = (
observable.Generic(prop_zaxis))
def ego_pedestal_xpos(physics):
pedestal_id = self._focal_pedestal_id
if pedestal_id is None:
return np.zeros((3,))
pedestal = self._pedestals[pedestal_id]
pedestal_xpos, _ = pedestal.get_pose(physics)
walker_xpos = physics.bind(self._walker.root_body).xpos
return self._walker.transform_vec_to_egocentric_frame(
physics, pedestal_xpos - walker_xpos)
self._task_observables['target_pedestal/xpos'] = (
observable.Generic(ego_pedestal_xpos))
for obs in (self._walker.observables.proprioception +
self._walker.observables.kinematic_sensors +
self._walker.observables.dynamic_sensors +
list(self._task_observables.values())):
obs.enabled = True
self._focal_prop_id = None
self._focal_pedestal_id = None
@property
def root_entity(self):
return self._arena
@property
def task_observables(self):
return self._task_observables
@property
def name(self):
return 'warehouse'
def initialize_episode_mjcf(self, random_state):
self._reward = 0.0
self._discount = 1.0
self._should_terminate = False
self._before_step_success = False
for target_value in self._target_state.values():
target_value[:] = 0
for pedestal_id, pedestal in enumerate(self._pedestals):
angle = 2 * np.pi * pedestal_id / len(self._pedestals)
dist = (_BASE_PEDESTAL_DIST +
_PEDESTAL_DIST_DELTA * random_state.uniform(-1, 1))
height = random_state.uniform(*self._pedestal_height_range)
pedestal_pos = [dist * np.cos(angle), dist * np.sin(angle),
height - pedestal.geom.size[2]]
mjcf.get_attachment_frame(pedestal.mjcf_model).pos = pedestal_pos
for prop in self._props:
prop.detach()
self._props = []
self._trajectory_for_prop = []
for prop_id in range(self._num_props):
trajectory = random_state.choice(self._trajectories)
if self._proto_modifier:
trajectory = trajectory.get_modified_trajectory(
self._proto_modifier, random_state=random_state)
prop = trajectory.create_props(
priority_friction=self._priority_friction)[0]
prop.mjcf_model.model = 'prop_{}'.format(prop_id)
self._arena.add_free_entity(prop)
self._props.append(prop)
self._trajectory_for_prop.append(trajectory)
def _settle_props(self, physics):
prop_freejoints = [mjcf.get_attachment_frame(prop.mjcf_model).freejoint
for prop in self._props]
physics.bind(prop_freejoints).qvel = 0
physics.forward()
for _ in range(_MAX_SETTLE_STEPS):
self._update_current_state(physics)
success = self._evaluate_target_state()
stopped = max(abs(physics.bind(prop_freejoints).qvel)) < _SETTLE_QVEL_TOL
if success and stopped:
break
else:
physics.step()
physics.data.time = 0
def initialize_episode(self, physics, random_state):
self._ground_geomid = physics.bind(
self._arena.mjcf_model.worldbody.geom[0]).element_id
self._feet_geomids = set(physics.bind(self._feet_geoms).element_id)
self._lhand_geomids = set(physics.bind(self._lhand_geoms).element_id)
self._rhand_geomids = set(physics.bind(self._rhand_geoms).element_id)
for prop_id in range(len(self._props)):
pedestal_id = _find_random_free_pedestal_id(
self._target_state[PROP_PEDESTAL], random_state)
pedestal = self._pedestals[pedestal_id]
self._target_state[PROP_PEDESTAL][prop_id, pedestal_id] = 1
for prop_id, prop in enumerate(self._props):
trajectory = self._trajectory_for_prop[prop_id]
pedestal_id = np.nonzero(
self._target_state[PROP_PEDESTAL][prop_id])[0][0]
pedestal = self._pedestals[pedestal_id]
pedestal_pos, _ = pedestal.get_pose(physics)
pedestal_delta = np.array(
pedestal_pos - trajectory.infer_pedestal_positions()[0])
pedestal_delta[2] += pedestal.geom.size[2]
prop_timestep = trajectory.get_timestep_data(0).props[0]
prop_pos = prop_timestep.position + np.array(pedestal_delta)
prop_quat = prop_timestep.quaternion
prop_pos[:2] += random_state.uniform(
-pedestal.geom.size[:2] / 2, pedestal.geom.size[:2] / 2)
prop.set_pose(physics, prop_pos, prop_quat)
self._settle_props(physics)
init_params = self._transition_manager.initialize_episode(
self._target_state, random_state)
if self._log_transitions:
logging.info(init_params)
self._on_transition(physics)
init_prop = self._props[init_params.prop_id]
init_pedestal = self._pedestals[init_params.pedestal_id]
self._init_prop_id = init_params.prop_id
self._init_pedestal_id = init_params.pedestal_id
init_trajectory = self._trajectory_for_prop[init_params.prop_id]
init_timestep = init_trajectory.get_random_timestep_in_segment(
init_params.clip_segment, random_state)
trajectory_pedestal_pos = init_trajectory.infer_pedestal_positions()[0]
init_pedestal_pos = np.array(init_pedestal.get_pose(physics)[0])
delta_pos = init_pedestal_pos - trajectory_pedestal_pos
delta_pos[2] = 0
delta_angle = np.pi + np.arctan2(init_pedestal_pos[1], init_pedestal_pos[0])
delta_quat = (np.cos(delta_angle / 2), 0, 0, np.sin(delta_angle / 2))
trajectory_pedestal_to_walker = (
init_timestep.walkers[0].position - trajectory_pedestal_pos)
rotated_pedestal_to_walker = _rotate_vector_by_quaternion(
trajectory_pedestal_to_walker, delta_quat)
self._walker.set_pose(
physics,
position=trajectory_pedestal_pos + rotated_pedestal_to_walker,
quaternion=init_timestep.walkers[0].quaternion)
self._walker.set_velocity(
physics, velocity=init_timestep.walkers[0].velocity,
angular_velocity=init_timestep.walkers[0].angular_velocity)
self._walker.shift_pose(
physics, position=delta_pos, quaternion=delta_quat,
rotate_velocity=True)
physics.bind(self._walker.mocap_joints).qpos = (
init_timestep.walkers[0].joints)
physics.bind(self._walker.mocap_joints).qvel = (
init_timestep.walkers[0].joints_velocity)
if init_params.clip_segment in (trajectories.ClipSegment.CARRY1,
trajectories.ClipSegment.CARRY2,
trajectories.ClipSegment.PUTDOWN):
trajectory_pedestal_to_prop = (
init_timestep.props[0].position - trajectory_pedestal_pos)
rotated_pedestal_to_prop = _rotate_vector_by_quaternion(
trajectory_pedestal_to_prop, delta_quat)
init_prop.set_pose(
physics,
position=trajectory_pedestal_pos + rotated_pedestal_to_prop,
quaternion=init_timestep.props[0].quaternion)
init_prop.set_velocity(
physics, velocity=init_timestep.props[0].velocity,
angular_velocity=init_timestep.props[0].angular_velocity)
init_prop.shift_pose(
physics, position=delta_pos,
quaternion=delta_quat, rotate_velocity=True)
# If we have moved the pedestal upwards during height initialization,
# the prop may now be lodged inside it. We fix that here.
if init_pedestal_pos[2] > trajectory_pedestal_pos[2]:
init_prop_geomid = physics.bind(init_prop.geom).element_id
init_pedestal_geomid = physics.bind(init_pedestal.geom).element_id
disallowed_contact = sorted((init_prop_geomid, init_pedestal_geomid))
def has_disallowed_contact():
physics.forward()
for contact in physics.data.contact:
if sorted((contact.geom1, contact.geom2)) == disallowed_contact:
return True
return False
while has_disallowed_contact():
init_prop.shift_pose(physics, (0, 0, 0.001))
self._move_arms_if_necessary(physics)
self._update_current_state(physics)
self._previous_step_success = self._evaluate_target_state()
self._focal_prop_id = self._init_prop_id
self._focal_pedestal_id = self._init_pedestal_id
def _move_arms_if_necessary(self, physics):
if self._min_prop_gap is not None:
for entity in self._props + self._pedestals:
try:
arm_opener.open_arms_for_prop(
physics, self._walker.left_arm_root, self._walker.right_arm_root,
entity.mjcf_model, self._min_prop_gap)
except RuntimeError as e:
raise composer.EpisodeInitializationError(e)
def after_step(self, physics, random_state):
# First we check for failure termination.
for contact in physics.data.contact:
if ((contact.geom1 == self._ground_geomid and
contact.geom2 not in self._feet_geomids) or
(contact.geom2 == self._ground_geomid and
contact.geom1 not in self._feet_geomids)):
if self._negative_reward_on_failure_termination:
self._reward = -_SPARSE_REWARD
else:
self._reward = 0.0
self._should_terminate = True
self._discount = 0.0
return
# Then check for normal reward and state transitions.
self._update_current_state(physics)
success = self._evaluate_target_state()
if success and not self._previous_step_success:
self._reward = _SPARSE_REWARD
new_phase = (
self._transition_manager.on_success(self._target_state, random_state))
self._should_terminate = (new_phase == WarehousePhase.TERMINATED)
self._on_transition(physics)
self._previous_step_success = self._evaluate_target_state()
else:
self._reward = 0.0
def _on_transition(self, physics):
self._focal_prop_id = self._transition_manager.prop_id
self._focal_pedestal_id = self._transition_manager.pedestal_id
if self._log_transitions:
logging.info('target_state:\n%s', self._target_state)
for pedestal_id, pedestal_active in enumerate(
self._target_state[WALKER_PEDESTAL]):
r, g, b, a = self._pedestal_colors[pedestal_id]
if pedestal_active:
h, _, s = colorsys.rgb_to_hls(r, g, b)
r, g, b = colorsys.hls_to_rgb(h, _ACTIVATED_PEDESTAL_L, s)
physics.bind(self._pedestals[pedestal_id].geom).rgba = (r, g, b, a)
def get_reward(self, physics):
return self._reward
def get_discount(self, physics):
return self._discount
def should_terminate_episode(self, physics):
return self._should_terminate
def _update_current_state(self, physics):
for current_state_value in self._current_state.values():
current_state_value[:] = 0
# Check if the walker is near each pedestal.
walker_pos, _ = self._walker.get_pose(physics)
for pedestal_id, pedestal in enumerate(self._pedestals):
target_pos, _ = pedestal.get_pose(physics)
walker_to_target_dist = np.linalg.norm(walker_pos[:2] - target_pos[:2])
if walker_to_target_dist <= _TARGET_TOL:
self._current_state[WALKER_PEDESTAL][pedestal_id] = 1
prop_geomids = {
physics.bind(prop.geom).element_id: prop_id
for prop_id, prop in enumerate(self._props)}
pedestal_geomids = {
physics.bind(pedestal.geom).element_id: pedestal_id
for pedestal_id, pedestal in enumerate(self._pedestals)}
prop_pedestal_contact_counts = np.zeros(
[self._num_props, self._num_pedestals])
prop_lhand_contact = [False] * self._num_props
prop_rhand_contact = [False] * self._num_props
for contact in physics.data.contact:
prop_id = prop_geomids.get(contact.geom1, prop_geomids.get(contact.geom2))
pedestal_id = pedestal_geomids.get(
contact.geom1, pedestal_geomids.get(contact.geom2))
has_lhand = (contact.geom1 in self._lhand_geomids or
contact.geom2 in self._lhand_geomids)
has_rhand = (contact.geom1 in self._rhand_geomids or
contact.geom2 in self._rhand_geomids)
if prop_id is not None and pedestal_id is not None:
prop_pedestal_contact_counts[prop_id, pedestal_id] += 1
if prop_id is not None and has_lhand:
prop_lhand_contact[prop_id] = True
if prop_id is not None and has_rhand:
prop_rhand_contact[prop_id] = True
for prop_id in range(self._num_props):
if prop_lhand_contact[prop_id] and prop_rhand_contact[prop_id]:
self._current_state[WALKER_PROP][prop_id] = 1
pedestal_contact_counts = prop_pedestal_contact_counts[prop_id]
for pedestal_id in range(self._num_pedestals):
if pedestal_contact_counts[pedestal_id] >= 4:
self._current_state[PROP_PEDESTAL][prop_id, pedestal_id] = 1
def _evaluate_target_state(self):
return _is_same_state(self._current_state, self._target_state)