forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
150 lines (118 loc) · 4.73 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2019 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Vanilla Q-Learning agent."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
from six.moves import range
class EpsilonGreedyPolicy(object):
"""Epsilon greedy policy for table value function lookup."""
def __init__(self, value_function, actions):
"""Construct an epsilon greedy policy object.
Args:
value_function: agent value function as a dict.
actions: list of possible actions.
Raises:
ValueError: if `actions` agument is not an iterable.
"""
if not isinstance(actions, collections.Iterable):
raise ValueError('`actions` argument must be an iterable.')
self._value_function = value_function
self._actions = actions
def get_action(self, epsilon, state):
"""Get action following the e-greedy policy.
Args:
epsilon: probability of selecting a random action
state: current state of the game as a state/action tuple.
Returns:
Chosen action.
"""
if np.random.random() < epsilon:
return np.random.choice(self._actions)
else:
values = [self._value_function[(state, action)]
for action in self._actions]
max_value = max(values)
max_indices = [i for i, value in enumerate(values) if value == max_value]
return self._actions[np.random.choice(max_indices)]
class QLearning(object):
"""Q-learning agent."""
def __init__(self, actions, alpha=0.1, epsilon=0.1, q_initialisation=0.0,
discount=0.99):
"""Create a Q-learning agent.
Args:
actions: a BoundedArraySpec that specifes full discrete action spec.
alpha: agent learning rate.
epsilon: agent exploration rate.
q_initialisation: float, used to initialise the value function.
discount: discount factor for rewards.
"""
self._value_function = collections.defaultdict(lambda: q_initialisation)
self._valid_actions = list(range(actions.minimum, actions.maximum + 1))
self._policy = EpsilonGreedyPolicy(self._value_function,
self._valid_actions)
# Hyperparameters.
self.alpha = alpha
self.epsilon = epsilon
self.discount = discount
# Episode internal variables.
self._current_action = None
self._current_state = None
def begin_episode(self):
"""Perform episode initialisation."""
self._current_state = None
self._current_action = None
def _timestep_to_state(self, timestep):
return tuple(map(tuple, np.copy(timestep.observation['board'])))
def step(self, timestep):
"""Perform a single step in the environment."""
# Get state observations.
state = self._timestep_to_state(timestep)
# This is one of the follow up states (i.e. not the initial state).
if self._current_state is not None:
self._update(timestep, state)
self._current_state = state
# Determine action.
self._current_action = self._policy.get_action(self.epsilon, state)
# Emit action.
return self._current_action
def _calculate_reward(self, timestep, unused_state):
"""Calculate reward: to be extended when impact penalty is added."""
reward = timestep.reward
return reward
def _update(self, timestep, state):
"""Perform value function update."""
reward = self._calculate_reward(timestep, state)
# Terminal state.
if not state:
delta = (reward - self._value_function[(self._current_state,
self._current_action)])
# Non-terminal state.
else:
max_action = self._policy.get_action(0, state)
delta = (
reward + self.discount * self._value_function[(state, max_action)] -
self._value_function[(self._current_state, self._current_action)])
self._value_function[(self._current_state,
self._current_action)] += self.alpha * delta
def end_episode(self, timestep):
"""Performs episode cleanup."""
# Update for the terminal state.
self._update(timestep, None)
@property
def value_function(self):
return self._value_function