forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
157 lines (129 loc) · 5.3 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Lint as: python2, python3
# pylint: disable=g-bad-file-header
# Copyright 2019 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Loss functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
import tensorflow.compat.v1 as tf
def sum_time_average_batch(tensor, name=None):
"""Computes the mean over B assuming tensor is of shape [T, B]."""
tensor.get_shape().assert_has_rank(2)
return tf.reduce_mean(tf.reduce_sum(tensor, axis=0), axis=0, name=name)
def combine_logged_values(*logged_values_dicts):
"""Combine logged values dicts. Throws if there are any repeated keys."""
combined_dict = dict()
for logged_values in logged_values_dicts:
for k, v in six.iteritems(logged_values):
if k in combined_dict:
raise ValueError('Key "%s" is repeated in loss logging.' % k)
combined_dict[k] = v
return combined_dict
def reconstruction_losses(
recons,
targets,
image_cost,
action_cost,
reward_cost):
"""Reconstruction losses."""
if image_cost > 0.0:
# Neg log prob of obs image given Bernoulli(recon image) distribution.
negative_image_log_prob = tf.nn.sigmoid_cross_entropy_with_logits(
labels=targets.image, logits=recons.image)
nll_per_time = tf.reduce_sum(negative_image_log_prob, [-3, -2, -1])
image_loss = image_cost * nll_per_time
image_loss = sum_time_average_batch(image_loss)
else:
image_loss = tf.constant(0.)
if action_cost > 0.0 and recons.last_action is not tuple():
# Labels have shape (T, B), logits have shape (T, B, num_actions).
action_loss = action_cost * tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=targets.last_action, logits=recons.last_action)
action_loss = sum_time_average_batch(action_loss)
else:
action_loss = tf.constant(0.)
if reward_cost > 0.0 and recons.last_reward is not tuple():
# MSE loss for reward.
recon_last_reward = recons.last_reward
recon_last_reward = tf.squeeze(recon_last_reward, -1)
reward_loss = 0.5 * reward_cost * tf.square(
recon_last_reward - targets.last_reward)
reward_loss = sum_time_average_batch(reward_loss)
else:
reward_loss = tf.constant(0.)
total_loss = image_loss + action_loss + reward_loss
logged_values = dict(
recon_loss_image=image_loss,
recon_loss_action=action_loss,
recon_loss_reward=reward_loss,
total_reconstruction_loss=total_loss,)
return total_loss, logged_values
def read_regularization_loss(
read_info,
strength_cost,
strength_tolerance,
strength_reg_mode,
key_norm_cost,
key_norm_tolerance):
"""Computes the sum of read strength and read key regularization losses."""
if (strength_cost <= 0.) and (key_norm_cost <= 0.):
read_reg_loss = tf.constant(0.)
return read_reg_loss, dict(read_regularization_loss=read_reg_loss)
if hasattr(read_info, 'read_strengths'):
read_strengths = read_info.read_strengths
read_keys = read_info.read_keys
else:
read_strengths = read_info.strengths
read_keys = read_info.keys
if read_info == tuple():
raise ValueError('Make sure read regularization costs are zero when '
'not outputting read info.')
read_reg_loss = tf.constant(0.)
if strength_cost > 0.:
strength_hinged = tf.maximum(strength_tolerance, read_strengths)
if strength_reg_mode == 'L2':
strength_loss = 0.5 * tf.square(strength_hinged)
elif strength_reg_mode == 'L1':
# Read strengths are always positive.
strength_loss = strength_hinged
else:
raise ValueError(
'Strength regularization mode "{}" is not supported.'.format(
strength_reg_mode))
# Sum across read heads to reduce from [T, B, n_reads] to [T, B].
strength_loss = strength_cost * tf.reduce_sum(strength_loss, axis=2)
if key_norm_cost > 0.:
key_norm_norms = tf.norm(read_keys, axis=-1)
key_norm_norms_hinged = tf.maximum(key_norm_tolerance, key_norm_norms)
key_norm_loss = 0.5 * tf.square(key_norm_norms_hinged)
# Sum across read heads to reduce from [T, B, n_reads] to [T, B].
key_norm_loss = key_norm_cost * tf.reduce_sum(key_norm_loss, axis=2)
read_reg_loss += key_norm_cost * key_norm_loss
if strength_cost > 0.:
strength_loss = sum_time_average_batch(strength_loss)
else:
strength_loss = tf.constant(0.)
if key_norm_cost > 0.:
key_norm_loss = sum_time_average_batch(key_norm_loss)
else:
key_norm_loss = tf.constant(0.)
read_reg_loss = strength_loss + key_norm_loss
logged_values = dict(
read_reg_strength_loss=strength_loss,
read_reg_key_norm_loss=key_norm_loss,
total_read_reg_loss=read_reg_loss)
return read_reg_loss, logged_values