-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathupdate_dic.m
33 lines (30 loc) · 947 Bytes
/
update_dic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function d=update_dic(y,x,dic)
%% Code by Liu He ([email protected])
% x 是系数, y 是需要近似的函数 , np 是字典原子大小
%% 用 x构造卷积字典
np=length(dic);
N=size(x(:),1);
%%
% XDic=circulant(x(:));
% XDic=XDic(:,1:np);
XDic=get_Circshift(repmat(x(:),1,np),[0:1:np-1]);
y=y(:);
% XDic*dic 是卷积结果. %这部分可直接用卷积代替矩阵乘法
%% argmin ||y-XDic*dic||_F
% %% 用梯度下降求解
% options = optimoptions(@fmincon,'HessianApproximation','lbfgs','MaxIterations',20);
% d=fmincon(@(xv)Obj_min(y(1:N),XDic,xv),dic,[],[],[],[],[],[],[],options);
% d=cgls(XDic,y(1:N),0,1e-3,20,'true',dic);
d=cgls(XDic,y(1:N),0,1e-3,20,[],dic); %共轭梯度下降
% d=inv(XDic'*XDic)*XDic'*y(1:N);
%% SPAMS 可持续加速算法
% d = mexConjGrad(XDic,y(1:N),dic,1e-3,100);
%% 共轭梯度下降
% a_ij=cell(1,1);
% a_ij{1,1}=sparse(x(:));
% epsilon=1e-6;
% [d] = conjgrad(a_ij,y(1:N),dic,epsilon);
end
function erro=Obj_min(y,XDic,dic)
erro=norm(y-XDic*dic,'fro');
end