-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBigramModel.py
179 lines (149 loc) · 7.9 KB
/
BigramModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from collections import Counter
# insert <s> to first and append </s> to end array, return words array
def get_words_array(sentence):
words_in_sent = sentence.split(' ')
words_in_sent.insert(0, '<s>')
words_in_sent.append('</s>')
return words_in_sent
class BigramModel():
def __init__(self, train_pos_set, train_neg_set, lambda_arr, epsilon, cut_down, cut_above):
self.train_positive_set = train_pos_set
self.train_negative_set = train_neg_set
self.lambda_arr = lambda_arr # [h0, h1, h2] => weights for probability
self.epsilon = epsilon
self.count_unary_train_pos_dict = {}
self.count_unary_train_neg_dict = {}
self.count_binary_train_pos_dict = {}
self.count_binary_train_neg_dict = {}
self.cut_down = cut_down
self.cut_above = cut_above
# cut from down
def do_alpha_cut(self):
for word in list(self.count_unary_train_pos_dict):
if self.count_unary_train_pos_dict[word] <= self.cut_down:
del self.count_unary_train_pos_dict[word]
for word in list(self.count_unary_train_neg_dict):
if self.count_unary_train_neg_dict[word] <= self.cut_down:
del self.count_unary_train_neg_dict[word]
# cut from above
def remove_from_above(self):
self.count_unary_train_pos_dict = sorted(self.count_unary_train_pos_dict.items(), key=lambda x: x[1],
reverse=True)
self.count_unary_train_neg_dict = sorted(self.count_unary_train_neg_dict.items(), key=lambda x: x[1],
reverse=True)
self.count_unary_train_pos_dict = dict(self.count_unary_train_pos_dict)
self.count_unary_train_neg_dict = dict(self.count_unary_train_neg_dict)
for i in range(self.cut_above):
del self.count_unary_train_pos_dict[list(self.count_unary_train_pos_dict)[i]]
del self.count_unary_train_neg_dict[list(self.count_unary_train_neg_dict)[i]]
def create_unary_words_dict(self):
for sentence in self.train_positive_set:
sentence = get_words_array(sentence)
words_in_sent = Counter(sentence)
for word in words_in_sent.keys():
if word in self.count_unary_train_pos_dict.keys():
self.count_unary_train_pos_dict[word] += 1
else:
self.count_unary_train_pos_dict[word] = 1
for sentence in self.train_negative_set:
sentence = get_words_array(sentence)
words_in_sent = Counter(sentence)
for word in words_in_sent.keys():
if word in self.count_unary_train_neg_dict.keys():
self.count_unary_train_neg_dict[word] += 1
else:
self.count_unary_train_neg_dict[word] = 1
self.do_alpha_cut()
self.remove_from_above()
self.calculate_number_words() # to calculate numbers of all words
def create_binary_words_dict(self):
for sentence in self.train_positive_set:
sentence = get_words_array(sentence)
words_in_sent = Counter(sentence)
for word_i in range(len(words_in_sent.keys()) - 1):
couple_word = (list(words_in_sent.keys())[word_i], list(words_in_sent.keys())[word_i + 1])
if couple_word in self.count_binary_train_pos_dict.keys():
self.count_binary_train_pos_dict[couple_word] += 1
else:
self.count_binary_train_pos_dict[couple_word] = 1
for sentence in self.train_negative_set:
sentence = get_words_array(sentence)
words_in_sent = Counter(sentence)
for word_i in range(len(words_in_sent.keys()) - 1):
couple_word = (list(words_in_sent.keys())[word_i], list(words_in_sent.keys())[word_i + 1])
if couple_word in self.count_binary_train_neg_dict.keys():
self.count_binary_train_neg_dict[couple_word] += 1
else:
self.count_binary_train_neg_dict[couple_word] = 1
# calculate p(wi|wi-1) = count(wi-1 wi)/count(wi-1) => p(word2|word1)
def calculate_simple_conditional_probability(self, word1, word2, dataset_mode):
if dataset_mode == "positive":
tuple_words = (word1, word2)
if word1 in self.count_unary_train_pos_dict and tuple_words in self.count_binary_train_pos_dict:
res = self.count_binary_train_pos_dict[tuple_words] / self.count_unary_train_pos_dict[
word1] # count(wi-1 wi)/count(wi-1)
else:
res = 0 # when word1 isn't in dict or 'word1 word2' isn't in dict
elif dataset_mode == "negative":
tuple_words = (word1, word2)
if word1 in self.count_unary_train_neg_dict and tuple_words in self.count_binary_train_neg_dict:
res = self.count_binary_train_neg_dict[tuple_words] / self.count_unary_train_neg_dict[
word1] # count(wi-1 wi)/count(wi-1)
else:
res = 0 # when word1 isn't in dict or 'word1 word2' isn't in dict
return res
# calculate number of all words in dictionary
def calculate_number_words(self):
sum_in_pos = 0
for value in self.count_unary_train_pos_dict.values():
sum_in_pos += value
sum_in_neg = 0
for value in self.count_unary_train_neg_dict.values():
sum_in_neg += value
self.number_words_in_pos = sum_in_pos
self.number_words_in_neg = sum_in_neg
# print(self.number_words_in_neg)
# print(self.number_words_in_pos)
# calculate p(w) = count(w)/M (M: all words in dictionary)
def calculate_unary_probability(self, word, dataset_mode):
if dataset_mode == "positive":
if word in self.count_unary_train_pos_dict:
res = self.count_unary_train_pos_dict[word] / self.number_words_in_pos
else:
res = 0
elif dataset_mode == "negative":
if word in self.count_unary_train_neg_dict:
res = self.count_unary_train_neg_dict[word] / self.number_words_in_neg
else:
res = 0
return res
# calculate p(wi|wi-1) = h2 * p(wi|wi-1) + h1 * p(wi) + h0 * e
def calculate_conditional_probability(self, word1, word2, dataset_mode):
[h0, h1, h2] = self.lambda_arr
res = h2 * self.calculate_simple_conditional_probability(word1, word2,
dataset_mode) + h1 * self.calculate_unary_probability(
word2, dataset_mode) + h0 * self.epsilon
return res
def calculate_sentence_probability(self, sentence, dataset_mode):
words_array = get_words_array(sentence)
PI = 1 # probability of sentences
for i in range(1, len(words_array)):
PI *= self.calculate_conditional_probability(words_array[i - 1], words_array[i], dataset_mode)
return PI
# start learning and create unary and binary words dictionary
def learning(self):
self.create_unary_words_dict()
self.create_binary_words_dict()
# recognize sentence is positive or negative
def recognize_sentence(self, sentence):
# calculate sentence probability to recognize better probability
prob_given_sentence_is_negative = self.calculate_sentence_probability(sentence, "negative")
# print("pos prob", prob_given_sentence_is_negative)
prob_given_sentence_is_positive = self.calculate_sentence_probability(sentence, "positive")
# print("neg prob", prob_given_sentence_is_positive)
if prob_given_sentence_is_positive > prob_given_sentence_is_negative:
return "positive"
elif prob_given_sentence_is_positive < prob_given_sentence_is_negative:
return "negative"
else:
return "equal"