-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathradix.go
561 lines (494 loc) · 11.2 KB
/
radix.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
package radix
import (
"sort"
"strings"
)
// WalkFn is used when walking the tree. Takes a
// key and value, returning if iteration should
// be terminated.
type WalkFn func(s string, v interface{}) bool
// leafNode is used to represent a value
type leafNode struct {
key string
val interface{}
}
// edge is used to represent an edge node
type edge struct {
label byte
node *node
}
type node struct {
// leaf is used to store possible leaf
leaf *leafNode
// prefix is the common prefix we ignore
prefix string
// Edges should be stored in-order for iteration.
// We avoid a fully materialized slice to save memory,
// since in most cases we expect to be sparse
edges edges
}
func (n *node) isLeaf() bool {
return n.leaf != nil
}
func (n *node) addEdge(e edge) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= e.label
})
n.edges = append(n.edges, edge{})
copy(n.edges[idx+1:], n.edges[idx:])
n.edges[idx] = e
}
func (n *node) updateEdge(label byte, node *node) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
n.edges[idx].node = node
return
}
panic("replacing missing edge")
}
func (n *node) getEdge(label byte) *node {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
return n.edges[idx].node
}
return nil
}
func (n *node) delEdge(label byte) {
num := len(n.edges)
idx := sort.Search(num, func(i int) bool {
return n.edges[i].label >= label
})
if idx < num && n.edges[idx].label == label {
copy(n.edges[idx:], n.edges[idx+1:])
n.edges[len(n.edges)-1] = edge{}
n.edges = n.edges[:len(n.edges)-1]
}
}
type edges []edge
func (e edges) Len() int {
return len(e)
}
func (e edges) Less(i, j int) bool {
return e[i].label < e[j].label
}
func (e edges) Swap(i, j int) {
e[i], e[j] = e[j], e[i]
}
func (e edges) Sort() {
sort.Sort(e)
}
// Tree implements a radix tree. This can be treated as a
// Dictionary abstract data type. The main advantage over
// a standard hash map is prefix-based lookups and
// ordered iteration,
type Tree struct {
root *node
size int
}
// New returns an empty Tree
func New() *Tree {
return NewFromMap(nil)
}
// NewFromMap returns a new tree containing the keys
// from an existing map
func NewFromMap(m map[string]interface{}) *Tree {
t := &Tree{root: &node{}}
for k, v := range m {
t.Insert(k, v)
}
return t
}
// Len is used to return the number of elements in the tree
func (t *Tree) Len() int {
return t.size
}
// longestPrefix finds the length of the shared prefix
// of two strings
func longestPrefix(k1, k2 string) int {
max := len(k1)
if l := len(k2); l < max {
max = l
}
var i int
for i = 0; i < max; i++ {
if k1[i] != k2[i] {
break
}
}
return i
}
// Insert is used to add a newentry or update
// an existing entry. Returns true if an existing record is updated.
func (t *Tree) Insert(s string, v interface{}) (interface{}, bool) {
var parent *node
n := t.root
search := s
for {
// Handle key exhaution
if len(search) == 0 {
if n.isLeaf() {
old := n.leaf.val
n.leaf.val = v
return old, true
}
n.leaf = &leafNode{
key: s,
val: v,
}
t.size++
return nil, false
}
// Look for the edge
parent = n
n = n.getEdge(search[0])
// No edge, create one
if n == nil {
e := edge{
label: search[0],
node: &node{
leaf: &leafNode{
key: s,
val: v,
},
prefix: search,
},
}
parent.addEdge(e)
t.size++
return nil, false
}
// Determine longest prefix of the search key on match
commonPrefix := longestPrefix(search, n.prefix)
if commonPrefix == len(n.prefix) {
search = search[commonPrefix:]
continue
}
// Split the node
t.size++
child := &node{
prefix: search[:commonPrefix],
}
parent.updateEdge(search[0], child)
// Restore the existing node
child.addEdge(edge{
label: n.prefix[commonPrefix],
node: n,
})
n.prefix = n.prefix[commonPrefix:]
// Create a new leaf node
leaf := &leafNode{
key: s,
val: v,
}
// If the new key is a subset, add to this node
search = search[commonPrefix:]
if len(search) == 0 {
child.leaf = leaf
return nil, false
}
// Create a new edge for the node
child.addEdge(edge{
label: search[0],
node: &node{
leaf: leaf,
prefix: search,
},
})
return nil, false
}
}
// Delete is used to delete a key, returning the previous
// value and if it was deleted
func (t *Tree) Delete(s string) (interface{}, bool) {
var parent *node
var label byte
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if !n.isLeaf() {
break
}
goto DELETE
}
// Look for an edge
parent = n
label = search[0]
n = n.getEdge(label)
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
DELETE:
// Delete the leaf
leaf := n.leaf
n.leaf = nil
t.size--
// Check if we should delete this node from the parent
if parent != nil && len(n.edges) == 0 {
parent.delEdge(label)
}
// Check if we should merge this node
if n != t.root && len(n.edges) == 1 {
n.mergeChild()
}
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
return leaf.val, true
}
// DeletePrefix is used to delete the subtree under a prefix
// Returns how many nodes were deleted
// Use this to delete large subtrees efficiently
func (t *Tree) DeletePrefix(s string) int {
return t.deletePrefix(nil, t.root, s)
}
// delete does a recursive deletion
func (t *Tree) deletePrefix(parent, n *node, prefix string) int {
// Check for key exhaustion
if len(prefix) == 0 {
// Remove the leaf node
subTreeSize := 0
//recursively walk from all edges of the node to be deleted
recursiveWalk(n, func(s string, v interface{}) bool {
subTreeSize++
return false
})
if n.isLeaf() {
n.leaf = nil
}
n.edges = nil // deletes the entire subtree
// Check if we should merge the parent's other child
if parent != nil && parent != t.root && len(parent.edges) == 1 && !parent.isLeaf() {
parent.mergeChild()
}
t.size -= subTreeSize
return subTreeSize
}
// Look for an edge
label := prefix[0]
child := n.getEdge(label)
if child == nil || (!strings.HasPrefix(child.prefix, prefix) && !strings.HasPrefix(prefix, child.prefix)) {
return 0
}
// Consume the search prefix
if len(child.prefix) > len(prefix) {
prefix = prefix[len(prefix):]
} else {
prefix = prefix[len(child.prefix):]
}
return t.deletePrefix(n, child, prefix)
}
func (n *node) mergeChild() {
e := n.edges[0]
child := e.node
n.prefix = n.prefix + child.prefix
n.leaf = child.leaf
n.edges = child.edges
}
// Get is used to lookup a specific key, returning
// the value and if it was found
func (t *Tree) Get(s string) (interface{}, bool) {
n := t.root
search := s
for {
// Check for key exhaution
if len(search) == 0 {
if n.isLeaf() {
return n.leaf.val, true
}
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
return nil, false
}
// LongestPrefix is like Get, but instead of an
// exact match, it will return the longest prefix match.
func (t *Tree) LongestPrefix(s string) (string, interface{}, bool) {
var last *leafNode
n := t.root
search := s
for {
// Look for a leaf node
if n.isLeaf() {
last = n.leaf
}
// Check for key exhaution
if len(search) == 0 {
break
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
break
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
if last != nil {
return last.key, last.val, true
}
return "", nil, false
}
// Minimum is used to return the minimum value in the tree
func (t *Tree) Minimum() (string, interface{}, bool) {
n := t.root
for {
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
if len(n.edges) > 0 {
n = n.edges[0].node
} else {
break
}
}
return "", nil, false
}
// Maximum is used to return the maximum value in the tree
func (t *Tree) Maximum() (string, interface{}, bool) {
n := t.root
for {
if num := len(n.edges); num > 0 {
n = n.edges[num-1].node
continue
}
if n.isLeaf() {
return n.leaf.key, n.leaf.val, true
}
break
}
return "", nil, false
}
// Walk is used to walk the tree
func (t *Tree) Walk(fn WalkFn) {
recursiveWalk(t.root, fn)
}
// WalkPrefix is used to walk the tree under a prefix
func (t *Tree) WalkPrefix(prefix string, fn WalkFn) {
n := t.root
search := prefix
for {
// Check for key exhaustion
if len(search) == 0 {
recursiveWalk(n, fn)
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
continue
}
if strings.HasPrefix(n.prefix, search) {
// Child may be under our search prefix
recursiveWalk(n, fn)
}
return
}
}
// WalkPath is used to walk the tree, but only visiting nodes
// from the root down to a given leaf. Where WalkPrefix walks
// all the entries *under* the given prefix, this walks the
// entries *above* the given prefix.
func (t *Tree) WalkPath(path string, fn WalkFn) {
n := t.root
search := path
for {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return
}
// Check for key exhaution
if len(search) == 0 {
return
}
// Look for an edge
n = n.getEdge(search[0])
if n == nil {
return
}
// Consume the search prefix
if strings.HasPrefix(search, n.prefix) {
search = search[len(n.prefix):]
} else {
break
}
}
}
// recursiveWalk is used to do a pre-order walk of a node
// recursively. Returns true if the walk should be aborted
func recursiveWalk(n *node, fn WalkFn) bool {
// Visit the leaf values if any
if n.leaf != nil && fn(n.leaf.key, n.leaf.val) {
return true
}
// Recurse on the children
i := 0
k := len(n.edges) // keeps track of number of edges in previous iteration
for i < k {
e := n.edges[i]
if recursiveWalk(e.node, fn) {
return true
}
// It is a possibility that the WalkFn modified the node we are
// iterating on. If there are no more edges, mergeChild happened,
// so the last edge became the current node n, on which we'll
// iterate one last time.
if len(n.edges) == 0 {
return recursiveWalk(n, fn)
}
// If there are now less edges than in the previous iteration,
// then do not increment the loop index, since the current index
// points to a new edge. Otherwise, get to the next index.
if len(n.edges) >= k {
i++
}
k = len(n.edges)
}
return false
}
// ToMap is used to walk the tree and convert it into a map
func (t *Tree) ToMap() map[string]interface{} {
out := make(map[string]interface{}, t.size)
t.Walk(func(k string, v interface{}) bool {
out[k] = v
return false
})
return out
}