-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCreatingemptymodel.py
478 lines (400 loc) · 17.2 KB
/
Creatingemptymodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.init as init
from torchvision import models
from torchvision.models.vgg import model_urls
import numpy as np
from skimage import io
import os
import math
import numpy as np
import cv2
def init_weights(modules):
for m in modules:
if isinstance(m, nn.Conv2d):
init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
class vgg16_bn(torch.nn.Module):
def __init__(self, pretrained=True, freeze=True):
super(vgg16_bn, self).__init__()
model_urls['vgg16_bn'] = model_urls['vgg16_bn'].replace('https://', 'http://')
vgg_pretrained_features = models.vgg16_bn(pretrained=pretrained).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(12): # conv2_2
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 19): # conv3_3
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(19, 29): # conv4_3
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(29, 39): # conv5_3
self.slice4.add_module(str(x), vgg_pretrained_features[x])
# fc6, fc7 without atrous conv
self.slice5 = torch.nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6),
nn.Conv2d(1024, 1024, kernel_size=1)
)
if not pretrained:
init_weights(self.slice1.modules())
init_weights(self.slice2.modules())
init_weights(self.slice3.modules())
init_weights(self.slice4.modules())
init_weights(self.slice5.modules()) # no pretrained model for fc6 and fc7
if freeze:
for param in self.slice1.parameters(): # only first conv
param.requires_grad= False
def forward(self, X):
h = self.slice1(X)
h_relu2_2 = h
h = self.slice2(h)
h_relu3_2 = h
h = self.slice3(h)
h_relu4_3 = h
h = self.slice4(h)
h_relu5_3 = h
h = self.slice5(h)
h_fc7 = h
vgg_outputs = namedtuple("VggOutputs", ['fc7', 'relu5_3', 'relu4_3', 'relu3_2', 'relu2_2'])
out = vgg_outputs(h_fc7, h_relu5_3, h_relu4_3, h_relu3_2, h_relu2_2)
return out
def loadImage(img_file):
img = io.imread(img_file) # RGB order
if img.shape[0] == 2: img = img[0]
if len(img.shape) == 2 : img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
if img.shape[2] == 4: img = img[:,:,:3]
img = np.array(img)
return img
def normalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
# should be RGB order
img = in_img.copy().astype(np.float32)
img -= np.array([mean[0] * 255.0, mean[1] * 255.0, mean[2] * 255.0], dtype=np.float32)
img /= np.array([variance[0] * 255.0, variance[1] * 255.0, variance[2] * 255.0], dtype=np.float32)
return img
def denormalizeMeanVariance(in_img, mean=(0.485, 0.456, 0.406), variance=(0.229, 0.224, 0.225)):
# should be RGB order
img = in_img.copy()
img *= variance
img += mean
img *= 255.0
img = np.clip(img, 0, 255).astype(np.uint8)
return img
def resize_aspect_ratio(img, square_size, interpolation, mag_ratio=1):
height, width, channel = img.shape
# magnify image size
target_size = mag_ratio * max(height, width)
# set original image size
if target_size > square_size:
#print("target_size -square_size ",target_size-square_size)
target_size = square_size
ratio = target_size / max(height, width)
target_h, target_w = int(height * ratio), int(width * ratio)
proc = cv2.resize(img, (target_w, target_h), interpolation = interpolation)
# make canvas and paste image
target_h32, target_w32 = target_h, target_w
if target_h % 32 != 0:
target_h32 = target_h + (32 - target_h % 32)
if target_w % 32 != 0:
target_w32 = target_w + (32 - target_w % 32)
resized = np.zeros((target_h32, target_w32, channel), dtype=np.float32)
resized[0:target_h, 0:target_w, :] = proc
target_h, target_w = target_h32, target_w32
size_heatmap = (int(target_w/2), int(target_h/2))
return resized, ratio, size_heatmap
def cvt2HeatmapImg(img):
img = (np.clip(img, 0, 1) * 255).astype(np.uint8)
img = cv2.applyColorMap(img, cv2.COLORMAP_JET)
return img
def get_files(img_dir):
imgs, masks, xmls = list_files(img_dir)
return imgs, masks, xmls
def list_files(in_path):
img_files = []
mask_files = []
gt_files = []
for (dirpath, dirnames, filenames) in os.walk(in_path):
for file in filenames:
filename, ext = os.path.splitext(file)
ext = str.lower(ext)
if ext == '.jpg' or ext == '.jpeg' or ext == '.gif' or ext == '.png' or ext == '.pgm':
img_files.append(os.path.join(dirpath, file))
elif ext == '.bmp':
mask_files.append(os.path.join(dirpath, file))
elif ext == '.xml' or ext == '.gt' or ext == '.txt':
gt_files.append(os.path.join(dirpath, file))
elif ext == '.zip':
continue
# img_files.sort()
# mask_files.sort()
# gt_files.sort()
return img_files, mask_files, gt_files
""" auxilary functions """
# unwarp corodinates
def warpCoord(Minv, pt):
out = np.matmul(Minv, (pt[0], pt[1], 1))
return np.array([out[0]/out[2], out[1]/out[2]])
""" end of auxilary functions """
def getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text):
# prepare data
linkmap = linkmap.copy()
textmap = textmap.copy()
img_h, img_w = textmap.shape
""" labeling method """
ret, text_score = cv2.threshold(textmap, low_text, 1, 0)
ret, link_score = cv2.threshold(linkmap, link_threshold, 1, 0)
text_score_comb = np.clip(text_score + link_score, 0, 1)
nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(text_score_comb.astype(np.uint8), connectivity=4)
det = []
mapper = []
for k in range(1,nLabels):
# size filtering
size = stats[k, cv2.CC_STAT_AREA]
if size < 10: continue
# thresholding
if np.max(textmap[labels==k]) < text_threshold: continue
# make segmentation map
segmap = np.zeros(textmap.shape, dtype=np.uint8)
segmap[labels==k] = 255
segmap[np.logical_and(link_score==1, text_score==0)] = 0 # remove link area
x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
niter = int(math.sqrt(size * min(w, h) / (w * h)) * 2)
sx, ex, sy, ey = x - niter, x + w + niter + 1, y - niter, y + h + niter + 1
# boundary check
if sx < 0 : sx = 0
if sy < 0 : sy = 0
if ex >= img_w: ex = img_w
if ey >= img_h: ey = img_h
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
segmap[sy:ey, sx:ex] = cv2.dilate(segmap[sy:ey, sx:ex], kernel)
# make box
np_contours = np.roll(np.array(np.where(segmap!=0)),1,axis=0).transpose().reshape(-1,2)
rectangle = cv2.minAreaRect(np_contours)
box = cv2.boxPoints(rectangle)
# align diamond-shape
w, h = np.linalg.norm(box[0] - box[1]), np.linalg.norm(box[1] - box[2])
box_ratio = max(w, h) / (min(w, h) + 1e-5)
if abs(1 - box_ratio) <= 0.1:
l, r = min(np_contours[:,0]), max(np_contours[:,0])
t, b = min(np_contours[:,1]), max(np_contours[:,1])
box = np.array([[l, t], [r, t], [r, b], [l, b]], dtype=np.float32)
# make clock-wise order
startidx = box.sum(axis=1).argmin()
box = np.roll(box, 4-startidx, 0)
box = np.array(box)
det.append(box)
mapper.append(k)
return det, labels, mapper
def getPoly_core(boxes, labels, mapper, linkmap):
# configs
num_cp = 5
max_len_ratio = 0.7
expand_ratio = 1.45
max_r = 2.0
step_r = 0.2
polys = []
for k, box in enumerate(boxes):
# size filter for small instance
w, h = int(np.linalg.norm(box[0] - box[1]) + 1), int(np.linalg.norm(box[1] - box[2]) + 1)
if w < 30 or h < 30:
polys.append(None); continue
# warp image
tar = np.float32([[0,0],[w,0],[w,h],[0,h]])
M = cv2.getPerspectiveTransform(box, tar)
word_label = cv2.warpPerspective(labels, M, (w, h), flags=cv2.INTER_NEAREST)
try:
Minv = np.linalg.inv(M)
except:
polys.append(None); continue
# binarization for selected label
cur_label = mapper[k]
word_label[word_label != cur_label] = 0
word_label[word_label > 0] = 1
""" Polygon generation """
# find top/bottom contours
cp = []
max_len = -1
for i in range(w):
region = np.where(word_label[:,i] != 0)[0]
if len(region) < 2 : continue
cp.append((i, region[0], region[-1]))
length = region[-1] - region[0] + 1
if length > max_len: max_len = length
# pass if max_len is similar to h
if h * max_len_ratio < max_len:
polys.append(None); continue
# get pivot points with fixed length
tot_seg = num_cp * 2 + 1
seg_w = w / tot_seg # segment width
pp = [None] * num_cp # init pivot points
cp_section = [[0, 0]] * tot_seg
seg_height = [0] * num_cp
seg_num = 0
num_sec = 0
prev_h = -1
for i in range(0,len(cp)):
(x, sy, ey) = cp[i]
if (seg_num + 1) * seg_w <= x and seg_num <= tot_seg:
# average previous segment
if num_sec == 0: break
cp_section[seg_num] = [cp_section[seg_num][0] / num_sec, cp_section[seg_num][1] / num_sec]
num_sec = 0
# reset variables
seg_num += 1
prev_h = -1
# accumulate center points
cy = (sy + ey) * 0.5
cur_h = ey - sy + 1
cp_section[seg_num] = [cp_section[seg_num][0] + x, cp_section[seg_num][1] + cy]
num_sec += 1
if seg_num % 2 == 0: continue # No polygon area
if prev_h < cur_h:
pp[int((seg_num - 1)/2)] = (x, cy)
seg_height[int((seg_num - 1)/2)] = cur_h
prev_h = cur_h
# processing last segment
if num_sec != 0:
cp_section[-1] = [cp_section[-1][0] / num_sec, cp_section[-1][1] / num_sec]
# pass if num of pivots is not sufficient or segment widh is smaller than character height
if None in pp or seg_w < np.max(seg_height) * 0.25:
polys.append(None); continue
# calc median maximum of pivot points
half_char_h = np.median(seg_height) * expand_ratio / 2
# calc gradiant and apply to make horizontal pivots
new_pp = []
for i, (x, cy) in enumerate(pp):
dx = cp_section[i * 2 + 2][0] - cp_section[i * 2][0]
dy = cp_section[i * 2 + 2][1] - cp_section[i * 2][1]
if dx == 0: # gradient if zero
new_pp.append([x, cy - half_char_h, x, cy + half_char_h])
continue
rad = - math.atan2(dy, dx)
c, s = half_char_h * math.cos(rad), half_char_h * math.sin(rad)
new_pp.append([x - s, cy - c, x + s, cy + c])
# get edge points to cover character heatmaps
isSppFound, isEppFound = False, False
grad_s = (pp[1][1] - pp[0][1]) / (pp[1][0] - pp[0][0]) + (pp[2][1] - pp[1][1]) / (pp[2][0] - pp[1][0])
grad_e = (pp[-2][1] - pp[-1][1]) / (pp[-2][0] - pp[-1][0]) + (pp[-3][1] - pp[-2][1]) / (pp[-3][0] - pp[-2][0])
for r in np.arange(0.5, max_r, step_r):
dx = 2 * half_char_h * r
if not isSppFound:
line_img = np.zeros(word_label.shape, dtype=np.uint8)
dy = grad_s * dx
p = np.array(new_pp[0]) - np.array([dx, dy, dx, dy])
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
spp = p
isSppFound = True
if not isEppFound:
line_img = np.zeros(word_label.shape, dtype=np.uint8)
dy = grad_e * dx
p = np.array(new_pp[-1]) + np.array([dx, dy, dx, dy])
cv2.line(line_img, (int(p[0]), int(p[1])), (int(p[2]), int(p[3])), 1, thickness=1)
if np.sum(np.logical_and(word_label, line_img)) == 0 or r + 2 * step_r >= max_r:
epp = p
isEppFound = True
if isSppFound and isEppFound:
break
# pass if boundary of polygon is not found
if not (isSppFound and isEppFound):
polys.append(None); continue
# make final polygon
poly = []
poly.append(warpCoord(Minv, (spp[0], spp[1])))
for p in new_pp:
poly.append(warpCoord(Minv, (p[0], p[1])))
poly.append(warpCoord(Minv, (epp[0], epp[1])))
poly.append(warpCoord(Minv, (epp[2], epp[3])))
for p in reversed(new_pp):
poly.append(warpCoord(Minv, (p[2], p[3])))
poly.append(warpCoord(Minv, (spp[2], spp[3])))
# add to final result
polys.append(np.array(poly))
return polys
def getDetBoxes(textmap, linkmap, text_threshold, link_threshold, low_text, poly=False):
boxes, labels, mapper = getDetBoxes_core(textmap, linkmap, text_threshold, link_threshold, low_text)
if poly:
polys = getPoly_core(boxes, labels, mapper, linkmap)
else:
polys = [None] * len(boxes)
return boxes, polys
def adjustResultCoordinates(polys, ratio_w, ratio_h, ratio_net = 2):
if len(polys) > 0:
polys = np.array(polys)
for k in range(len(polys)):
if polys[k] is not None:
polys[k] *= (ratio_w * ratio_net, ratio_h * ratio_net)
return polys
import torch
import torch.nn as nn
import torch.nn.functional as F
#from basenet.vgg16_bn import vgg16_bn, init_weights
class double_conv(nn.Module):
def __init__(self, in_ch, mid_ch, out_ch):
super(double_conv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_ch + mid_ch, mid_ch, kernel_size=1),
nn.BatchNorm2d(mid_ch),
nn.ReLU(inplace=True),
nn.Conv2d(mid_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.conv(x)
return x
class CRAFT(nn.Module):
def __init__(self, pretrained=False, freeze=False):
super(CRAFT, self).__init__()
""" Base network """
self.basenet = vgg16_bn(pretrained, freeze)
""" U network """
self.upconv1 = double_conv(1024, 512, 256)
self.upconv2 = double_conv(512, 256, 128)
self.upconv3 = double_conv(256, 128, 64)
self.upconv4 = double_conv(128, 64, 32)
num_class = 2
self.conv_cls = nn.Sequential(
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(32, 16, kernel_size=3, padding=1), nn.ReLU(inplace=True),
nn.Conv2d(16, 16, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(16, num_class, kernel_size=1),
)
init_weights(self.upconv1.modules())
init_weights(self.upconv2.modules())
init_weights(self.upconv3.modules())
init_weights(self.upconv4.modules())
init_weights(self.conv_cls.modules())
def forward(self, x):
""" Base network """
sources = self.basenet(x)
""" U network """
y = torch.cat([sources[0], sources[1]], dim=1)
y = self.upconv1(y)
y = F.interpolate(y, size=sources[2].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[2]], dim=1)
y = self.upconv2(y)
y = F.interpolate(y, size=sources[3].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[3]], dim=1)
y = self.upconv3(y)
y = F.interpolate(y, size=sources[4].size()[2:], mode='bilinear', align_corners=False)
y = torch.cat([y, sources[4]], dim=1)
feature = self.upconv4(y)
y = self.conv_cls(feature)
return y.permute(0,2,3,1), feature
if __name__ == '__main__':
model = CRAFT(pretrained=True).cuda()
output, _ = model(torch.randn(1, 3, 768, 768).cuda())
print(output.shape)