-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinteractivePicA.jl
144 lines (125 loc) · 4.7 KB
/
interactivePicA.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
### A Pluto.jl notebook ###
# v0.19.25
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 4a510b9e-213a-452e-b14b-3a8a12383c19
using Pkg; Pkg.activate("../.")
# ╔═╡ d2304800-21d3-495c-ad26-0f994e7328e9
begin
using SyncSSCModel
using SpectralFitting
using Plots
gr()
using PlutoUI
end
# ╔═╡ cbf7004c-e681-464d-ba56-677e312bf3b5
md"""
# Testing interactive models in Pluto.jl
"""
# ╔═╡ 14dff0ad-3a72-48ab-ab62-a1386a8530f5
md"""
Interactive exploration of the SSC model for Pictor A
"""
# ╔═╡ bd0e25a0-b015-40e3-942f-219286a6ef90
md"""
Define SSC model
"""
# ╔═╡ 0ac10751-444f-423b-a4e7-5839e29be045
function PicASSCModel(;
K = FitParam(1.0, lower_limit = 0.5, upper_limit = 2.0),
log_B = FitParam(-4.6096, lower_limit = -6.0, upper_limit = -2.0),
n_e0 = FitParam(4.9715, lower_limit = 1.0, upper_limit = 10.0),
log_radius = FitParam(log10(7.7E20), lower_limit = 20.0, upper_limit = 22.0),
Γ = FitParam(1.0),
log_γ_min = FitParam(log10(8.7E1)),
log_γ_max = FitParam(log10(1.0E6), lower_limit = 4.0, upper_limit = 8.0),
p = FitParam(2.48),
log_dL = FitParam(log10(4.752E26), lower_limit = 26.0, upper_limit = 28.0),
θ = FitParam(23.0 * pi / 180.0),
z = FitParam(0.035),
)
SSCModel{
typeof(K),
SpectralFitting.FreeParameters{(:log_B, :n_e0, :log_γ_max)},
}(
K, log_B, n_e0, p, log_γ_min, log_γ_max, Γ, log_radius, θ, log_dL, z,
)
end
# ╔═╡ 7c509230-b97e-4ed3-b46e-8151625096d6
md"""
Define Pictor A dataset of flux densities at different frequencies
"""
# ╔═╡ ec2cfccf-c976-4363-8de4-dac4b4f442ae
begin
lines = readlines(@__DIR__() * "/PicA.txt")
number_expr = r"(-?\d*\.\d*)"
search_expr = r"^" * number_expr * r"\s+" * number_expr
data_stacked = map(filter(!isnothing, match.(search_expr, lines))) do m
parse.(Float64, m.captures)
end
# sort just for coherence
sort!(data_stacked)
# flatten array
data = reduce(hcat, data_stacked)
end
# ╔═╡ a980821a-e07d-4983-a60c-1a47874f52db
dataset = SimpleDataset(
"PicAdata",
10 .^ data[1, :],
10 .^ data[2, :],
x_units = SpectralFitting.SpectralUnits.u"Hz",
x_err = 0.05 .* (10 .^ data[1, :]),
y_err = 0.1 .* (10 .^ data[2, :]),
)
# ╔═╡ 53a26f8a-89de-4e1d-bfc1-9a0ea676bcbb
md"""
Adjustable model parameters
"""
# ╔═╡ 2b095fe7-f16d-4d30-a0db-764e087e897f
@bind var_n_e0 Slider(0.1:0.1:10, default=5.3)
# ╔═╡ 2728a610-48dd-40a0-9f19-306d9b33e80f
@bind var_log_B Slider(-6.0:0.1:-2.0, default=-4.5)
# ╔═╡ f3b1babf-c7ad-4f66-91be-4b14b3c24ba8
@bind var_log_γ_max Slider(4.0:0.1:8.0, default=6.0)
# ╔═╡ a022f9ca-9a3d-46c4-af36-053a1ecd3588
print("Density n_e0 = ", var_n_e0, " Magnetic field B = ", var_log_B, " log_10(γ_max) = ", var_log_γ_max)
# ╔═╡ 1175735a-22f1-4662-8029-8983ad747318
md"""
Evaluate model, plot model, overplot data
"""
# ╔═╡ 7efde37e-52ee-4239-846d-08b33fc9d5fb
begin
νrange = 10 .^ collect(range(7, 26, 100))
model = PicASSCModel()
model_free_pars = [var_log_B, var_n_e0, var_log_γ_max]
flux = invokemodel(νrange, model, model_free_pars)
nonzero = findall(x -> x > 0.0, flux)
plot(νrange[nonzero], flux[nonzero], xrange=(1e7, 1e26), yrange=(1e-14, 1e-11), xscale=:log10, yscale=:log10, xlabel="ν (Hz)", ylabel="Flux (units)", label = "Model", legend = :topleft)
plot!(dataset.x, dataset.y, seriestype = :scatter, markersize = 3, markerstrokewidth = 0, mc=:red, label = "Data")
end
# ╔═╡ Cell order:
# ╟─cbf7004c-e681-464d-ba56-677e312bf3b5
# ╟─14dff0ad-3a72-48ab-ab62-a1386a8530f5
# ╠═4a510b9e-213a-452e-b14b-3a8a12383c19
# ╠═d2304800-21d3-495c-ad26-0f994e7328e9
# ╟─bd0e25a0-b015-40e3-942f-219286a6ef90
# ╠═0ac10751-444f-423b-a4e7-5839e29be045
# ╟─7c509230-b97e-4ed3-b46e-8151625096d6
# ╠═ec2cfccf-c976-4363-8de4-dac4b4f442ae
# ╠═a980821a-e07d-4983-a60c-1a47874f52db
# ╟─53a26f8a-89de-4e1d-bfc1-9a0ea676bcbb
# ╠═2b095fe7-f16d-4d30-a0db-764e087e897f
# ╠═2728a610-48dd-40a0-9f19-306d9b33e80f
# ╠═f3b1babf-c7ad-4f66-91be-4b14b3c24ba8
# ╠═a022f9ca-9a3d-46c4-af36-053a1ecd3588
# ╟─1175735a-22f1-4662-8029-8983ad747318
# ╠═7efde37e-52ee-4239-846d-08b33fc9d5fb