-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinspection.py
45 lines (31 loc) · 1.25 KB
/
inspection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
"""Implementation of sample defense.
This defense loads inception v3 checkpoint and classifies all images
using loaded checkpoint.
"""
import tensorflow as tf
from tensorflow.contrib.slim.nets import inception
slim = tf.contrib.slim
def main(_):
batch_shape = [16, 299, 299, 3]
num_classes = 1001
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
# Prepare graph
x_input = tf.placeholder(tf.float32, shape=batch_shape)
with slim.arg_scope(inception.inception_v3_arg_scope()):
_, end_points = inception.inception_v3(
x_input, num_classes=num_classes, is_training=False)
predicted_labels = tf.argmax(end_points['Predictions'], 1)
# Run computation
saver = tf.train.Saver(slim.get_model_variables())
session_creator = tf.train.ChiefSessionCreator(
scaffold=tf.train.Scaffold(saver=saver),
checkpoint_filename_with_path="inception_v3.ckpt",
master="")
with tf.train.MonitoredSession(session_creator=session_creator) as sess:
optim_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
for v in optim_vars:
print(v.shape)
#labels = sess.run(predicted_labels, feed_dict={x_input: images})
if __name__ == '__main__':
tf.app.run()