-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
244 lines (180 loc) · 8.11 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from datetime import datetime
import tensorflow as tf
import time
from tensorflow.contrib import slim
from tensorflow.python.training.basic_session_run_hooks import CheckpointSaverHook
from nets.vgg import vgg_a
from preprocessing import preprocessing_factory
from datasets import imagenet
batch_size = 64
labels_offset = 1
def create_variable(name, shape, initializer):
dtype = tf.float32
return tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
def variable_with_weight_decay(name, shape, stddev):
"""Helper to create an initialized Variable with weight decay.
Note that the Variable is initialized with a truncated normal distribution.
A weight decay is added only if one is specified.
Args:
name: name of the variable
shape: list of ints
stddev: standard deviation of a truncated Gaussian
wd: add L2Loss weight decay multiplied by this float. If None, weight
decay is not added for this Variable.
Returns:
Variable Tensor
"""
dtype = tf.float32
var = create_variable(
name,
shape,
tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
return var
NUM_CLASSES = 1000
def inference(images, reuse=False):
"""Build the CIFAR-10 model.
Args:
images: Images returned from distorted_inputs() or inputs().
Returns:
Logits.
"""
conv1 = slim.conv2d(images, 3, 64, [3, 3], scope='conv1', reuse=reuse)
# pool1
pool1 = slim.max_pool2d(conv1, [2, 2], scope='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
conv2 = slim.conv2d(norm1, 64, 128, [3, 3], scope='conv2', reuse=reuse)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = slim.max_pool2d(norm2, [2, 2], scope='pool2')
# conv3
conv3 = slim.conv2d(pool2, 128, 128, [3, 3], scope='conv3', reuse=reuse)
# norm3
norm3 = tf.nn.lrn(conv3, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool3 = tf.nn.max_pool(norm3, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
print(pool3.get_shape())
# local3
with tf.variable_scope('local3', reuse=reuse) as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool3, [batch_size, -1])
dim = reshape.get_shape()[1].value
weights = variable_with_weight_decay('weights', shape=[dim, 512],
stddev=0.04)
biases = create_variable('biases', [512], tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
# local4
with tf.variable_scope('local4', reuse=reuse) as scope:
weights = variable_with_weight_decay('weights', shape=[512, 512],
stddev=0.04)
biases = create_variable('biases', [512], tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope('softmax_linear', reuse=reuse) as scope:
weights = variable_with_weight_decay('weights', [512, NUM_CLASSES],
stddev=1 / 192.0)
biases = create_variable('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
return softmax_linear
class _LoggerHook(tf.train.SessionRunHook):
"""Logs loss and runtime."""
def __init__(self, loss):
self.loss = loss
def begin(self):
self._step = -1
self._start_time = time.time()
def before_run(self, run_context):
self._step += 1
return tf.train.SessionRunArgs(self.loss) # Asks for loss value.
def after_run(self, run_context, run_values):
if self._step % 10 == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
loss_value = run_values.results
examples_per_sec = 0 # FLAGS.log_frequency * FLAGS.batch_size / duration
sec_per_batch = 0 # float(duration / FLAGS.log_frequency)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print(format_str % (datetime.now(), self._step, loss_value,
examples_per_sec, sec_per_batch))
def variable_summaries(name, var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar(name + '/mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar(name + '/stddev', stddev)
tf.summary.scalar(name + '/max', tf.reduce_max(var))
tf.summary.scalar(name + '/min', tf.reduce_min(var))
tf.summary.histogram(name + '/histogram', var)
def main(_):
with tf.Graph().as_default():
global_step = tf.contrib.framework.get_or_create_global_step()
dataset = imagenet.get_split(
'train',
'/home/atsky/imagenet-data')
with tf.device('/cpu:0'):
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=True,
common_queue_capacity=2 * batch_size,
common_queue_min=batch_size)
[image, label] = provider.get(['image', 'label'])
label -= labels_offset
#train_image_size = 32
train_image_size = 224
preprocessing_name = "vgg"
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name,
is_training=True)
image = image_preprocessing_fn(image, train_image_size, train_image_size)
print(image)
print(label)
images_batch, labels_num = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=4,
capacity=5 * batch_size)
labels_batch = slim.one_hot_encoding(labels_num, dataset.num_classes - labels_offset)
images = images_batch #tf.placeholder(tf.float32, shape=(batch_size, train_image_size, train_image_size, 3))
labels = labels_batch #tf.placeholder(tf.float32, shape=(batch_size, 1000))
logits, end_points = vgg_a(images)
logits = tf.clip_by_value(logits, -20, 20)
#logits = inference(images)
loss = tf.losses.softmax_cross_entropy(labels, logits, label_smoothing=0.001)
correct_prediction = tf.equal(tf.argmax(labels, 1), tf.argmax(logits, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tvars = tf.trainable_variables()
grads = tf.gradients(loss, tvars)
for var, grad in zip(tvars, grads):
variable_summaries(var.name, grad)
train_step = tf.train.RMSPropOptimizer(1e-2, momentum=0.9, decay=0.9, epsilon=0.01).minimize(
loss, global_step=global_step, var_list=tvars)
mean_loss = 0
mean_acc = 0
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('train_logs')
with tf.train.MonitoredSession(hooks=[CheckpointSaverHook("checkpoints", save_secs=30 * 60)]) as sess:
for i in range(1000000):
l, acc, _ = sess.run([loss, accuracy, train_step])
mean_loss += l / 1000.0
mean_acc += acc / 1000.0
if (i + 1) % 1000 == 0:
print("i {}, loss: {:.5f} acc: {}".format(i, mean_loss, mean_acc))
summary = sess.run(merged)
train_writer.add_summary(summary, i)
mean_loss = 0
mean_acc = 0
if __name__ == '__main__':
tf.app.run()