forked from houshd/MLSTM-FCN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopportunity_model.py
113 lines (78 loc) · 3.16 KB
/
opportunity_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from keras.models import Model
from keras.layers import Input, Dense, LSTM, multiply, concatenate, Activation, Masking, Reshape
from keras.layers import Conv1D, BatchNormalization, GlobalAveragePooling1D, Permute, Dropout
from utils.constants import MAX_NB_VARIABLES, NB_CLASSES_LIST, MAX_TIMESTEPS_LIST
from utils.keras_utils import train_model, evaluate_model, set_trainable
from utils.layer_utils import AttentionLSTM
DATASET_INDEX = 12
MAX_TIMESTEPS = MAX_TIMESTEPS_LIST[DATASET_INDEX]
MAX_NB_VARIABLES = MAX_NB_VARIABLES[DATASET_INDEX]
NB_CLASS = NB_CLASSES_LIST[DATASET_INDEX]
TRAINABLE = True
def generate_model():
ip = Input(shape=(MAX_NB_VARIABLES, MAX_TIMESTEPS))
x = Masking()(ip)
x = LSTM(8)(x)
x = Dropout(0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = squeeze_excite_block(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = squeeze_excite_block(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# add load model code here to fine-tune
return model
def generate_model_2():
ip = Input(shape=(MAX_NB_VARIABLES, MAX_TIMESTEPS))
x = Masking()(ip)
x = AttentionLSTM(8)(x)
x = Dropout(0.8)(x)
y = Permute((2, 1))(ip)
y = Conv1D(128, 8, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = squeeze_excite_block(y)
y = Conv1D(256, 5, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = squeeze_excite_block(y)
y = Conv1D(128, 3, padding='same', kernel_initializer='he_uniform')(y)
y = BatchNormalization()(y)
y = Activation('relu')(y)
y = GlobalAveragePooling1D()(y)
x = concatenate([x, y])
out = Dense(NB_CLASS, activation='softmax')(x)
model = Model(ip, out)
model.summary()
# add load model code here to fine-tune
return model
def squeeze_excite_block(input):
''' Create a squeeze-excite block
Args:
input: input tensor
filters: number of output filters
k: width factor
Returns: a keras tensor
'''
filters = input._keras_shape[-1] # channel_axis = -1 for TF
se = GlobalAveragePooling1D()(input)
se = Reshape((1, filters))(se)
se = Dense(filters // 16, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)
se = multiply([input, se])
return se
if __name__ == "__main__":
model = generate_model_2()
# train_model(model, DATASET_INDEX, dataset_prefix='occupancy_detect', epochs=1000, batch_size=128)
evaluate_model(model, DATASET_INDEX, dataset_prefix='occupancy_detect', batch_size=128)