-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstory_fid_model.py
376 lines (296 loc) · 11.9 KB
/
story_fid_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
import torch.nn as nn
import pdb
try:
from torchvision.models.utils import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
__all__ = ['r3d_18', 'mc3_18', 'r2plus1d_18']
model_urls = {
'r3d_18': 'https://download.pytorch.org/models/r3d_18-b3b3357e.pth',
'mc3_18': 'https://download.pytorch.org/models/mc3_18-a90a0ba3.pth',
'r2plus1d_18': 'https://download.pytorch.org/models/r2plus1d_18-91a641e6.pth',
}
class Conv3DSimple(nn.Conv3d):
def __init__(self,
in_planes,
out_planes,
midplanes=None,
stride=1,
padding=1):
super(Conv3DSimple, self).__init__(
in_channels=in_planes,
out_channels=out_planes,
kernel_size=(3, 3, 3),
stride=stride,
padding=padding,
bias=False)
@staticmethod
def get_downsample_stride(stride):
return (stride, stride, stride)
class Conv2Plus1D(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
midplanes,
stride=1,
padding=1):
super(Conv2Plus1D, self).__init__(
nn.Conv3d(in_planes, midplanes, kernel_size=(1, 3, 3),
stride=(1, stride, stride), padding=(0, padding, padding),
bias=False),
nn.BatchNorm3d(midplanes),
nn.ReLU(inplace=True),
nn.Conv3d(midplanes, out_planes, kernel_size=(3, 1, 1),
stride=(stride, 1, 1), padding=(padding, 0, 0),
bias=False))
@staticmethod
def get_downsample_stride(stride):
return (stride, stride, stride)
class Conv2Plus1D(nn.Sequential):
def __init__(self,
in_planes,
out_planes,
midplanes,
stride=1,
padding=1):
super(Conv2Plus1D, self).__init__(
nn.Conv3d(in_planes, midplanes, kernel_size=(1, 3, 3),
stride=(1, stride, stride), padding=(0, padding, padding),
bias=False),
nn.BatchNorm3d(midplanes),
nn.ReLU(inplace=True),
nn.Conv3d(midplanes, out_planes, kernel_size=(3, 1, 1),
stride=(stride, 1, 1), padding=(padding, 0, 0),
bias=False))
@staticmethod
def get_downsample_stride(stride):
return (stride, stride, stride)
class Conv3DNoTemporal(nn.Conv3d):
def __init__(self,
in_planes,
out_planes,
midplanes=None,
stride=1,
padding=1):
super(Conv3DNoTemporal, self).__init__(
in_channels=in_planes,
out_channels=out_planes,
kernel_size=(1, 3, 3),
stride=(1, stride, stride),
padding=(0, padding, padding),
bias=False)
@staticmethod
def get_downsample_stride(stride):
return (1, stride, stride)
class BasicBlock(nn.Module):
__constants__ = ['downsample']
expansion = 1
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
super(BasicBlock, self).__init__()
self.conv1 = nn.Sequential(
conv_builder(inplanes, planes, midplanes, stride),
nn.BatchNorm3d(planes),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
conv_builder(planes, planes, midplanes),
nn.BatchNorm3d(planes)
)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, conv_builder, stride=1, downsample=None):
super(Bottleneck, self).__init__()
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
# 1x1x1
self.conv1 = nn.Sequential(
nn.Conv3d(inplanes, planes, kernel_size=1, bias=False),
nn.BatchNorm3d(planes),
nn.ReLU(inplace=True)
)
# Second kernel
self.conv2 = nn.Sequential(
conv_builder(planes, planes, midplanes, stride),
nn.BatchNorm3d(planes),
nn.ReLU(inplace=True)
)
# 1x1x1
self.conv3 = nn.Sequential(
nn.Conv3d(planes, planes * self.expansion, kernel_size=1, bias=False),
nn.BatchNorm3d(planes * self.expansion)
)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class BasicStem(nn.Sequential):
"""The default conv-batchnorm-relu stem
"""
def __init__(self):
super(BasicStem, self).__init__(
nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2),
padding=(1, 3, 3), bias=False),
nn.BatchNorm3d(64),
nn.ReLU(inplace=True))
class R2Plus1dStem(nn.Sequential):
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution
"""
def __init__(self):
super(R2Plus1dStem, self).__init__(
nn.Conv3d(3, 45, kernel_size=(1, 7, 7),
stride=(1, 2, 2), padding=(0, 3, 3),
bias=False),
nn.BatchNorm3d(45),
nn.ReLU(inplace=True),
nn.Conv3d(45, 64, kernel_size=(3, 1, 1),
stride=(1, 1, 1), padding=(1, 0, 0),
bias=False),
nn.BatchNorm3d(64),
nn.ReLU(inplace=True))
class VideoResNet(nn.Module):
def __init__(self, block, conv_makers, layers,
stem, avg_pool_layer=False, num_classes=400,
zero_init_residual=False):
"""Generic resnet video generator.
Args:
block (nn.Module): resnet building block
conv_makers (list(functions)): generator function for each layer
layers (List[int]): number of blocks per layer
stem (nn.Module, optional): Resnet stem, if None, defaults to conv-bn-relu. Defaults to None.
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400.
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False.
"""
super(VideoResNet, self).__init__()
self.inplanes = 64
self.stem = stem()
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1)
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
# init weights
self._initialize_weights()
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
self.output_avg_pool = avg_pool_layer
def forward(self, x):
x = self.stem(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
# Flatten the layer to fc
x = x.flatten(1)
if self.output_avg_pool:
return x
else:
x = self.fc(x)
return x
def _make_layer(self, block, conv_builder, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
ds_stride = conv_builder.get_downsample_stride(stride)
downsample = nn.Sequential(
nn.Conv3d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=ds_stride, bias=False),
nn.BatchNorm3d(planes * block.expansion)
)
layers = []
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, conv_builder))
return nn.Sequential(*layers)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight, mode='fan_out',
nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def _video_resnet(arch, pretrained=False, progress=True, **kwargs):
model = VideoResNet(**kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model
def r3d_18(pretrained=False, progress=True, **kwargs):
"""Construct 18 layer Resnet3D model as in
https://arxiv.org/abs/1711.11248
Args:
pretrained (bool): If True, returns a model pre-trained on Kinetics-400
progress (bool): If True, displays a progress bar of the download to stderr
Returns:
nn.Module: R3D-18 network
"""
return _video_resnet('r3d_18',
pretrained, progress,
block=BasicBlock,
conv_makers=[Conv3DSimple] * 4,
layers=[2, 2, 2, 2],
stem=BasicStem, **kwargs)
def mc3_18(pretrained=False, progress=True, **kwargs):
"""Constructor for 18 layer Mixed Convolution network as in
https://arxiv.org/abs/1711.11248
Args:
pretrained (bool): If True, returns a model pre-trained on Kinetics-400
progress (bool): If True, displays a progress bar of the download to stderr
Returns:
nn.Module: MC3 Network definition
"""
return _video_resnet('mc3_18',
pretrained, progress,
block=BasicBlock,
conv_makers=[Conv3DSimple] + [Conv3DNoTemporal] * 3,
layers=[2, 2, 2, 2],
stem=BasicStem, **kwargs)
def r2plus1d_18(pretrained=False, progress=True, avg_pool_layer=False, **kwargs):
"""Constructor for the 18 layer deep R(2+1)D network as in
https://arxiv.org/abs/1711.11248
Args:
pretrained (bool): If True, returns a model pre-trained on Kinetics-400
progress (bool): If True, displays a progress bar of the download to stderr
Returns:
nn.Module: R(2+1)D-18 network
"""
return _video_resnet('r2plus1d_18',
pretrained, progress,
block=BasicBlock,
conv_makers=[Conv2Plus1D] * 4,
layers=[2, 2, 2, 2],
stem=R2Plus1dStem,
avg_pool_layer=avg_pool_layer,
**kwargs)