forked from ecdufcdrvr/bcmufctdrvr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathocs_hal_rqpair.c
976 lines (867 loc) · 29.4 KB
/
ocs_hal_rqpair.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
/*
* BSD LICENSE
*
* Copyright (c) 2011-2018 Broadcom. All Rights Reserved.
* The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* This file contains code related to operating in RQ Pair mode.
*
*/
#include "ocs_os.h"
#include "ocs_hal.h"
/* Uncomment this to turn on RQ debug */
// #define ENABLE_DEBUG_RQBUF
static int32_t ocs_hal_rqpair_find(ocs_hal_t *hal, uint16_t rq_id);
static ocs_hal_sequence_t * ocs_hal_rqpair_get(ocs_hal_t *hal, uint16_t rqindex, uint16_t bufindex);
static int32_t ocs_hal_rqpair_put(ocs_hal_t *hal, ocs_hal_sequence_t *seq);
static ocs_hal_rtn_e ocs_hal_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hal_t *hal, ocs_hal_sequence_t *seq);
/**
* @brief Process receive queue completions for RQ Pair mode.
*
* @par Description
* RQ completions are processed. In RQ pair mode, a single header and single payload
* buffer are received, and passed to the function that has registered for unsolicited
* callbacks.
*
* @param hal Hardware context.
* @param cq Pointer to HAL completion queue.
* @param cqe Completion queue entry.
*
* @return Returns 0 for success, or a negative error code value for failure.
*/
int32_t
ocs_hal_rqpair_process_rq(ocs_hal_t *hal, hal_cq_t *cq, uint8_t *cqe)
{
uint16_t rq_id;
uint32_t index;
int32_t rqindex;
int32_t rq_status;
uint32_t h_len;
uint32_t p_len;
ocs_hal_sequence_t *seq;
rq_status = sli_fc_rqe_rqid_and_index(&hal->sli, cqe, &rq_id, &index);
if (0 != rq_status) {
switch (rq_status) {
case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED:
case SLI4_FC_ASYNC_RQ_DMA_FAILURE:
/* just get RQ buffer then return to chip */
rqindex = ocs_hal_rqpair_find(hal, rq_id);
if (rqindex < 0) {
ocs_log_test(hal->os, "%s: status=%#x: rq_id lookup failed for id=%#x\n",
__func__, rq_status, rq_id);
break;
}
/* get RQ buffer */
seq = ocs_hal_rqpair_get(hal, rqindex, index);
/* return to chip */
if (ocs_hal_rqpair_sequence_free(hal, seq)) {
ocs_log_test(hal->os, "%s: status=%#x, failed to return buffers to RQ\n",
__func__, rq_status);
break;
}
break;
case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED:
case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC:
/* since RQ buffers were not consumed, cannot return them to chip */
/* fall through */
ocs_log_debug(hal->os, "%s: Warning: RCQE status=%#x, \n",
__func__, rq_status);
default:
break;
}
return -1;
}
rqindex = ocs_hal_rqpair_find(hal, rq_id);
if (rqindex < 0) {
ocs_log_test(hal->os, "%s: Error: rq_id lookup failed for id=%#x\n",
__func__, rq_id);
return -1;
}
OCS_STAT({ hal_rq_t *rq = hal->hal_rq[hal->hal_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++;
rq->payload_use_count++;})
seq = ocs_hal_rqpair_get(hal, rqindex, index);
ocs_hal_assert(seq != NULL);
seq->hal = hal;
seq->auto_xrdy = 0;
seq->out_of_xris = 0;
seq->xri = 0;
seq->hio = NULL;
sli_fc_rqe_length(&hal->sli, cqe, &h_len, &p_len);
seq->header->dma.len = h_len;
seq->payload->dma.len = p_len;
seq->fcfi = sli_fc_rqe_fcfi(&hal->sli, cqe);
seq->hal_priv = cq->eq;
/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
if (hal->config.bounce) {
fc_header_t *hdr = seq->header->dma.virt;
uint32_t s_id = fc_be24toh(hdr->s_id);
uint32_t d_id = fc_be24toh(hdr->d_id);
uint32_t ox_id = ocs_be16toh(hdr->ox_id);
if (hal->callback.bounce != NULL) {
(*hal->callback.bounce)(ocs_hal_unsol_process_bounce, seq, s_id, d_id, ox_id);
}
} else {
hal->callback.unsolicited(hal->args.unsolicited, seq);
}
return 0;
}
/**
* @brief Process receive queue completions for RQ Pair mode - Auto xfer rdy
*
* @par Description
* RQ completions are processed. In RQ pair mode, a single header and single payload
* buffer are received, and passed to the function that has registered for unsolicited
* callbacks.
*
* @param hal Hardware context.
* @param cq Pointer to HAL completion queue.
* @param cqe Completion queue entry.
*
* @return Returns 0 for success, or a negative error code value for failure.
*/
int32_t
ocs_hal_rqpair_process_auto_xfr_rdy_cmd(ocs_hal_t *hal, hal_cq_t *cq, uint8_t *cqe)
{
/* Seems silly to call a SLI function to decode - use the structure directly for performance */
sli4_fc_optimized_write_cmd_cqe_t *opt_wr = (sli4_fc_optimized_write_cmd_cqe_t*)cqe;
uint16_t rq_id;
uint32_t index;
int32_t rqindex;
int32_t rq_status;
uint32_t h_len;
uint32_t p_len;
ocs_hal_sequence_t *seq;
uint8_t axr_lock_taken = 0;
#if defined(OCS_DISC_SPIN_DELAY)
uint32_t delay = 0;
char prop_buf[32];
#endif
rq_status = sli_fc_rqe_rqid_and_index(&hal->sli, cqe, &rq_id, &index);
if (0 != rq_status) {
switch (rq_status) {
case SLI4_FC_ASYNC_RQ_BUF_LEN_EXCEEDED:
case SLI4_FC_ASYNC_RQ_DMA_FAILURE:
/* just get RQ buffer then return to chip */
rqindex = ocs_hal_rqpair_find(hal, rq_id);
if (rqindex < 0) {
ocs_log_err(hal->os, "%s: status=%#x: rq_id lookup failed for id=%#x\n",
__func__, rq_status, rq_id);
break;
}
/* get RQ buffer */
seq = ocs_hal_rqpair_get(hal, rqindex, index);
/* return to chip */
if (ocs_hal_rqpair_sequence_free(hal, seq)) {
ocs_log_err(hal->os, "%s: status=%#x, failed to return buffers to RQ\n",
__func__, rq_status);
break;
}
break;
case SLI4_FC_ASYNC_RQ_INSUFF_BUF_NEEDED:
case SLI4_FC_ASYNC_RQ_INSUFF_BUF_FRM_DISC:
/* since RQ buffers were not consumed, cannot return them to chip */
ocs_log_debug(hal->os, "%s: Warning: RCQE status=%#x, \n",
__func__, rq_status);
/* fall through */
default:
break;
}
return -1;
}
rqindex = ocs_hal_rqpair_find(hal, rq_id);
if (rqindex < 0) {
ocs_log_err(hal->os, "%s: Error: rq_id lookup failed for id=%#x\n",
__func__, rq_id);
return -1;
}
OCS_STAT({ hal_rq_t *rq = hal->hal_rq[hal->hal_rq_lookup[rqindex]]; rq->use_count++; rq->hdr_use_count++;
rq->payload_use_count++;})
seq = ocs_hal_rqpair_get(hal, rqindex, index);
ocs_hal_assert(seq != NULL);
seq->hal = hal;
seq->auto_xrdy = opt_wr->agxr;
seq->out_of_xris = opt_wr->oox;
seq->xri = opt_wr->xri;
seq->hio = NULL;
sli_fc_rqe_length(&hal->sli, cqe, &h_len, &p_len);
seq->header->dma.len = h_len;
seq->payload->dma.len = p_len;
seq->fcfi = sli_fc_rqe_fcfi(&hal->sli, cqe);
seq->hal_priv = cq->eq;
if (seq->auto_xrdy) {
fc_header_t *fc_hdr = seq->header->dma.virt;
seq->hio = ocs_hal_io_lookup(hal, seq->xri);
ocs_lock(&seq->hio->axr_lock);
axr_lock_taken = 1;
/* save the FCFI, src_id, dest_id and ox_id because we need it for the sequence object when the data comes. */
seq->hio->axr_buf->fcfi = seq->fcfi;
seq->hio->axr_buf->hdr.ox_id = fc_hdr->ox_id;
seq->hio->axr_buf->hdr.s_id = fc_hdr->s_id;
seq->hio->axr_buf->hdr.d_id = fc_hdr->d_id;
seq->hio->axr_buf->cmd_cqe = 1;
/*
* Since auto xfer rdy is used for this IO, then clear the sequence
* initiative bit in the header so that the upper layers wait for the
* data. This should flow exactly like the first burst case.
*/
fc_hdr->f_ctl &= fc_htobe24(~FC_FCTL_SEQUENCE_INITIATIVE);
/* If AXR CMD CQE came before previous TRSP CQE of same XRI */
if (seq->hio->type == OCS_HAL_IO_TARGET_RSP) {
seq->hio->axr_buf->call_axr_cmd = 1;
seq->hio->axr_buf->cmd_seq = seq;
goto exit_ocs_hal_rqpair_process_auto_xfr_rdy_cmd;
}
}
/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
if (hal->config.bounce) {
fc_header_t *hdr = seq->header->dma.virt;
uint32_t s_id = fc_be24toh(hdr->s_id);
uint32_t d_id = fc_be24toh(hdr->d_id);
uint32_t ox_id = ocs_be16toh(hdr->ox_id);
if (hal->callback.bounce != NULL) {
(*hal->callback.bounce)(ocs_hal_unsol_process_bounce, seq, s_id, d_id, ox_id);
}
} else {
hal->callback.unsolicited(hal->args.unsolicited, seq);
}
if (seq->auto_xrdy) {
/* If data cqe came before cmd cqe in out of order in case of AXR */
if(seq->hio->axr_buf->data_cqe == 1) {
#if defined(OCS_DISC_SPIN_DELAY)
if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) {
delay = ocs_strtoul(prop_buf, 0, 0);
ocs_udelay(delay);
}
#endif
/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
if (hal->config.bounce) {
fc_header_t *hdr = seq->header->dma.virt;
uint32_t s_id = fc_be24toh(hdr->s_id);
uint32_t d_id = fc_be24toh(hdr->d_id);
uint32_t ox_id = ocs_be16toh(hdr->ox_id);
if (hal->callback.bounce != NULL) {
(*hal->callback.bounce)(ocs_hal_unsol_process_bounce, &seq->hio->axr_buf->seq, s_id, d_id, ox_id);
}
} else {
hal->callback.unsolicited(hal->args.unsolicited, &seq->hio->axr_buf->seq);
}
}
}
exit_ocs_hal_rqpair_process_auto_xfr_rdy_cmd:
if(axr_lock_taken) {
ocs_unlock(&seq->hio->axr_lock);
}
return 0;
}
/**
* @brief Process CQ completions for Auto xfer rdy data phases.
*
* @par Description
* The data is DMA'd into the data buffer posted to the SGL prior to the XRI
* being assigned to an IO. When the completion is received, All of the data
* is in the single buffer.
*
* @param hal Hardware context.
* @param cq Pointer to HAL completion queue.
* @param cqe Completion queue entry.
*
* @return Returns 0 for success, or a negative error code value for failure.
*/
int32_t
ocs_hal_rqpair_process_auto_xfr_rdy_data(ocs_hal_t *hal, hal_cq_t *cq, uint8_t *cqe)
{
/* Seems silly to call a SLI function to decode - use the structure directly for performance */
sli4_fc_optimized_write_data_cqe_t *opt_wr = (sli4_fc_optimized_write_data_cqe_t*)cqe;
ocs_hal_sequence_t *seq;
ocs_hal_io_t *io;
ocs_hal_auto_xfer_rdy_buffer_t *buf;
#if defined(OCS_DISC_SPIN_DELAY)
uint32_t delay = 0;
char prop_buf[32];
#endif
/* Look up the IO */
io = ocs_hal_io_lookup(hal, opt_wr->xri);
ocs_lock(&io->axr_lock);
buf = io->axr_buf;
buf->data_cqe = 1;
seq = &buf->seq;
seq->hal = hal;
seq->auto_xrdy = 1;
seq->out_of_xris = 0;
seq->xri = opt_wr->xri;
seq->hio = io;
seq->header = &buf->header;
seq->payload = &buf->payload;
seq->header->dma.len = sizeof(fc_header_t);
seq->payload->dma.len = opt_wr->total_data_placed;
seq->fcfi = buf->fcfi;
seq->hal_priv = cq->eq;
if (opt_wr->status == SLI4_FC_WCQE_STATUS_SUCCESS) {
seq->status = OCS_HAL_UNSOL_SUCCESS;
} else if (opt_wr->status == SLI4_FC_WCQE_STATUS_REMOTE_STOP) {
seq->status = OCS_HAL_UNSOL_ABTS_RCVD;
} else {
seq->status = OCS_HAL_UNSOL_ERROR;
}
/* If AXR CMD CQE came before previous TRSP CQE of same XRI */
if(io->type == OCS_HAL_IO_TARGET_RSP) {
io->axr_buf->call_axr_data = 1;
goto exit_ocs_hal_rqpair_process_auto_xfr_rdy_data;
}
if(!buf->cmd_cqe) {
/* if data cqe came before cmd cqe, return here, cmd cqe will handle */
goto exit_ocs_hal_rqpair_process_auto_xfr_rdy_data;
}
#if defined(OCS_DISC_SPIN_DELAY)
if (ocs_get_property("disk_spin_delay", prop_buf, sizeof(prop_buf)) == 0) {
delay = ocs_strtoul(prop_buf, 0, 0);
ocs_udelay(delay);
}
#endif
/* bounce enabled, single RQ, we snoop the ox_id to choose the cpuidx */
if (hal->config.bounce) {
fc_header_t *hdr = seq->header->dma.virt;
uint32_t s_id = fc_be24toh(hdr->s_id);
uint32_t d_id = fc_be24toh(hdr->d_id);
uint32_t ox_id = ocs_be16toh(hdr->ox_id);
if (hal->callback.bounce != NULL) {
(*hal->callback.bounce)(ocs_hal_unsol_process_bounce, seq, s_id, d_id, ox_id);
}
} else {
hal->callback.unsolicited(hal->args.unsolicited, seq);
}
exit_ocs_hal_rqpair_process_auto_xfr_rdy_data:
ocs_unlock(&io->axr_lock);
return 0;
}
/**
* @brief Return pointer to RQ buffer entry.
*
* @par Description
* Returns a pointer to the RQ buffer entry given by @c rqindex and @c bufindex.
*
* @param hal Hardware context.
* @param rqindex Index of the RQ that is being processed.
* @param bufindex Index into the RQ that is being processed.
*
* @return Pointer to the sequence structure, or NULL otherwise.
*/
static ocs_hal_sequence_t *
ocs_hal_rqpair_get(ocs_hal_t *hal, uint16_t rqindex, uint16_t bufindex)
{
sli4_queue_t *rq_hdr = &hal->rq[rqindex];
sli4_queue_t *rq_payload = &hal->rq[rqindex+1];
ocs_hal_sequence_t *seq = NULL;
hal_rq_t *rq = hal->hal_rq[hal->hal_rq_lookup[rqindex]];
#if defined(ENABLE_DEBUG_RQBUF)
uint64_t rqbuf_debug_value = 0xdead0000 | ((rq->id & 0xf) << 12) | (bufindex & 0xfff);
#endif
if (bufindex >= rq_hdr->length) {
ocs_log_err(hal->os, "%s: RQ index %d bufindex %d exceed ring length %d for id %d\n",
__func__, rqindex, bufindex, rq_hdr->length, rq_hdr->id);
return NULL;
}
sli_queue_lock(rq_hdr);
sli_queue_lock(rq_payload);
#if defined(ENABLE_DEBUG_RQBUF)
/* Put a debug value into the rq, to track which entries are still valid */
_sli_queue_poke(&hal->sli, rq_hdr, bufindex, (uint8_t *)&rqbuf_debug_value);
_sli_queue_poke(&hal->sli, rq_payload, bufindex, (uint8_t *)&rqbuf_debug_value);
#endif
seq = rq->rq_tracker[bufindex];
rq->rq_tracker[bufindex] = NULL;
if (seq == NULL ) {
ocs_log_err(hal->os, "%s: RQ buffer NULL, rqindex %d, bufindex %d, current q index = %d\n",
__func__, rqindex, bufindex, rq_hdr->index);
}
sli_queue_unlock(rq_payload);
sli_queue_unlock(rq_hdr);
return seq;
}
/**
* @brief Posts an RQ buffer to a queue and update the verification structures
*
* @param hal hardware context
* @param seq Pointer to sequence object.
*
* @return Returns 0 on success, or a non-zero value otherwise.
*/
static int32_t
ocs_hal_rqpair_put(ocs_hal_t *hal, ocs_hal_sequence_t *seq)
{
sli4_queue_t *rq_hdr = &hal->rq[seq->header->rqindex];
sli4_queue_t *rq_payload = &hal->rq[seq->payload->rqindex];
uint32_t hal_rq_index = hal->hal_rq_lookup[seq->header->rqindex];
hal_rq_t *rq = hal->hal_rq[hal_rq_index];
uint32_t phys_hdr[2];
uint32_t phys_payload[2];
int32_t qindex_hdr;
int32_t qindex_payload;
/* Update the RQ verification lookup tables */
phys_hdr[0] = ocs_addr32_hi(seq->header->dma.phys);
phys_hdr[1] = ocs_addr32_lo(seq->header->dma.phys);
phys_payload[0] = ocs_addr32_hi(seq->payload->dma.phys);
phys_payload[1] = ocs_addr32_lo(seq->payload->dma.phys);
sli_queue_lock(rq_hdr);
sli_queue_lock(rq_payload);
/*
* Note: The header must be posted last for buffer pair mode because
* posting on the header queue posts the payload queue as well.
* We do not ring the payload queue independently in RQ pair mode.
*/
qindex_payload = _sli_queue_write(&hal->sli, rq_payload, (void *)phys_payload);
qindex_hdr = _sli_queue_write(&hal->sli, rq_hdr, (void *)phys_hdr);
if (qindex_hdr < 0 ||
qindex_payload < 0) {
ocs_log_err(hal->os, "RQ_ID=%#x write failed\n", rq_hdr->id);
sli_queue_unlock(rq_payload);
sli_queue_unlock(rq_hdr);
return OCS_HAL_RTN_ERROR;
}
/* ensure the indexes are the same */
ocs_hal_assert(qindex_hdr == qindex_payload);
/* Update the lookup table */
if (rq->rq_tracker[qindex_hdr] == NULL) {
rq->rq_tracker[qindex_hdr] = seq;
} else {
ocs_log_test(hal->os, "%s: expected rq_tracker[%d][%d] buffer to be NULL\n", __func__,
hal_rq_index, qindex_hdr);
}
sli_queue_unlock(rq_payload);
sli_queue_unlock(rq_hdr);
return OCS_HAL_RTN_SUCCESS;
}
/**
* @brief Return RQ buffers (while in RQ pair mode).
*
* @par Description
* The header and payload buffers are returned to the Receive Queue.
*
* @param hal Hardware context.
* @param seq Header/payload sequence buffers.
*
* @return Returns OCS_HAL_RTN_SUCCESS on success, or an error code value on failure.
*/
ocs_hal_rtn_e
ocs_hal_rqpair_sequence_free(ocs_hal_t *hal, ocs_hal_sequence_t *seq)
{
ocs_hal_rtn_e rc = OCS_HAL_RTN_SUCCESS;
/* Check for auto xfer rdy dummy buffers and call the proper release function. */
if (seq->header->rqindex == OCS_HAL_RQ_INDEX_DUMMY_HDR) {
return ocs_hal_rqpair_auto_xfer_rdy_buffer_sequence_reset(hal, seq);
}
/*
* Post the data buffer first. Because in RQ pair mode, ringing the
* doorbell of the header ring will post the data buffer as well.
*/
if (ocs_hal_rqpair_put(hal, seq)) {
ocs_log_err(hal->os, "%s: error writing buffers\n", __func__);
return OCS_HAL_RTN_ERROR;
}
return rc;
}
/**
* @brief Find the RQ index of RQ_ID.
*
* @param hal Hardware context.
* @param rq_id RQ ID to find.
*
* @return Returns the RQ index, or -1 if not found
*/
static inline int32_t
ocs_hal_rqpair_find(ocs_hal_t *hal, uint16_t rq_id)
{
return ocs_hal_queue_hash_find(hal->rq_hash, rq_id);
}
/**
* @ingroup devInitShutdown
* @brief Allocate auto xfer rdy buffers.
*
* @par Description
* Allocates the auto xfer rdy buffers and places them on the free list.
*
* @param hal Hardware context allocated by the caller.
* @param num_buffers Number of buffers to allocate.
*
* @return Returns 0 on success, or a non-zero value on failure.
*/
ocs_hal_rtn_e
ocs_hal_rqpair_auto_xfer_rdy_buffer_alloc(ocs_hal_t *hal, uint32_t num_buffers)
{
ocs_hal_auto_xfer_rdy_buffer_t *buf;
uint32_t i;
hal->auto_xfer_rdy_buf_pool = ocs_pool_alloc(hal->os, sizeof(ocs_hal_auto_xfer_rdy_buffer_t), num_buffers, FALSE);
if (hal->auto_xfer_rdy_buf_pool == NULL) {
ocs_log_err(hal->os, "%s: Failure to allocate auto xfer ready buffer pool\n", __func__);
return OCS_HAL_RTN_NO_MEMORY;
}
for (i = 0; i < num_buffers; i++) {
/* allocate the wrapper object */
buf = ocs_pool_get_instance(hal->auto_xfer_rdy_buf_pool, i);
ocs_hal_assert(buf != NULL);
/* allocate the auto xfer ready buffer */
if (ocs_dma_alloc(hal->os, &buf->payload.dma, hal->config.auto_xfer_rdy_size, OCS_MIN_DMA_ALIGNMENT)) {
ocs_log_err(hal->os, "%s: DMA allocation failed\n", __func__);
ocs_free(hal->os, buf, sizeof(*buf));
return OCS_HAL_RTN_NO_MEMORY;
}
/* build a fake data header in big endian */
buf->hdr.info = FC_RCTL_INFO_SOL_DATA;
buf->hdr.r_ctl = FC_RCTL_FC4_DATA;
buf->hdr.type = FC_TYPE_FCP;
buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER |
FC_FCTL_FIRST_SEQUENCE |
FC_FCTL_LAST_SEQUENCE |
FC_FCTL_END_SEQUENCE |
FC_FCTL_SEQUENCE_INITIATIVE);
/* build the fake header DMA object */
buf->header.rqindex = OCS_HAL_RQ_INDEX_DUMMY_HDR;
buf->header.dma.virt = &buf->hdr;
buf->header.dma.alloc = buf;
buf->header.dma.size = sizeof(buf->hdr);
buf->header.dma.len = sizeof(buf->hdr);
buf->payload.rqindex = OCS_HAL_RQ_INDEX_DUMMY_DATA;
}
return OCS_HAL_RTN_SUCCESS;
}
/**
* @ingroup devInitShutdown
* @brief Post Auto xfer rdy buffers to the XRIs posted with DNRX.
*
* @par Description
* When new buffers are freed, check existing XRIs waiting for buffers.
*
* @param hal Hardware context allocated by the caller.
*/
static void
ocs_hal_rqpair_auto_xfer_rdy_dnrx_check(ocs_hal_t *hal)
{
ocs_hal_io_t *io;
int32_t rc;
ocs_lock(&hal->io_lock);
while (!ocs_list_empty(&hal->io_port_dnrx)) {
io = ocs_list_remove_head(&hal->io_port_dnrx);
rc = ocs_hal_reque_xri(hal, io);
if(rc) {
break;
}
}
ocs_unlock(&hal->io_lock);
}
/**
* @brief Called when the POST_SGL_PAGE command completes.
*
* @par Description
* Free the mailbox command buffer.
*
* @param hal Hardware context.
* @param status Status field from the mbox completion.
* @param mqe Mailbox response structure.
* @param arg Pointer to a callback function that signals the caller that the command is done.
*
* @return Returns 0.
*/
static int32_t
ocs_hal_rqpair_auto_xfer_rdy_move_to_port_cb(ocs_hal_t *hal, int32_t status, uint8_t *mqe, void *arg)
{
if (status != 0) {
ocs_log_debug(hal->os, "%s Status 0x%x\n", __func__, status);
}
ocs_free(hal->os, mqe, SLI4_BMBX_SIZE);
return 0;
}
/**
* @brief Prepares an XRI to move to the chip.
*
* @par Description
* Puts the data SGL into the SGL list for the IO object and possibly registers
* an SGL list for the XRI. Since both the POST_XRI and POST_SGL_PAGES commands are
* mailbox commands, we don't need to wait for completion before preceding.
*
* @param hal Hardware context allocated by the caller.
* @param io Pointer to the IO object.
*
* @return Returns OCS_HAL_RTN_SUCCESS for success, or an error code value for failure.
*/
ocs_hal_rtn_e
ocs_hal_rqpair_auto_xfer_rdy_move_to_port(ocs_hal_t *hal, ocs_hal_io_t *io)
{
/* We only need to preregister the SGL if it has not yet been done. */
if (!sli_get_sgl_preregister(&hal->sli)) {
uint8_t *post_sgl;
ocs_dma_t *psgls = &io->def_sgl;
ocs_dma_t **sgls = &psgls;
/* non-local buffer required for mailbox queue */
post_sgl = ocs_malloc(hal->os, SLI4_BMBX_SIZE, OCS_M_NOWAIT);
if (post_sgl == NULL) {
ocs_log_err(hal->os, "%s no buffer for command\n", __func__);
return OCS_HAL_RTN_NO_MEMORY;
}
if (sli_cmd_fcoe_post_sgl_pages(&hal->sli, post_sgl, SLI4_BMBX_SIZE,
io->indicator, 1, sgls, NULL, NULL)) {
if (ocs_hal_command(hal, post_sgl, OCS_CMD_NOWAIT,
ocs_hal_rqpair_auto_xfer_rdy_move_to_port_cb, NULL)) {
ocs_free(hal->os, post_sgl, SLI4_BMBX_SIZE);
ocs_log_err(hal->os, "%s: SGL post failed\n", __func__);
return OCS_HAL_RTN_ERROR;
}
}
}
ocs_lock(&hal->io_lock);
if (ocs_hal_rqpair_auto_xfer_rdy_buffer_post(hal, io, 0) != 0) { /* DNRX set - no buffer */
ocs_unlock(&hal->io_lock);
return OCS_HAL_RTN_ERROR;
}
ocs_unlock(&hal->io_lock);
return OCS_HAL_RTN_SUCCESS;
}
/**
* @brief Prepares an XRI to move back to the host.
*
* @par Description
* Releases any attached buffer back to the pool.
*
* @param hal Hardware context allocated by the caller.
* @param io Pointer to the IO object.
*/
void
ocs_hal_rqpair_auto_xfer_rdy_move_to_host(ocs_hal_t *hal, ocs_hal_io_t *io)
{
if (io->axr_buf != NULL) {
ocs_lock(&hal->io_lock);
/* check list and remove if there */
if (ocs_list_on_list(&io->dnrx_link)) {
ocs_list_remove(&hal->io_port_dnrx, io);
io->auto_xfer_rdy_dnrx = 0;
/* release the count for waiting for a buffer */
ocs_hal_io_free(hal, io);
}
ocs_pool_put(hal->auto_xfer_rdy_buf_pool, io->axr_buf);
io->axr_buf = NULL;
ocs_unlock(&hal->io_lock);
ocs_hal_rqpair_auto_xfer_rdy_dnrx_check(hal);
}
return;
}
/**
* @brief Posts an auto xfer rdy buffer to an IO.
*
* @par Description
* Puts the data SGL into the SGL list for the IO object
* @n @name
* @b Note: io_lock must be held.
*
* @param hal Hardware context allocated by the caller.
* @param io Pointer to the IO object.
*
* @return Returns the value of DNRX bit in the TRSP and ABORT WQEs.
*/
uint8_t
ocs_hal_rqpair_auto_xfer_rdy_buffer_post(ocs_hal_t *hal, ocs_hal_io_t *io, int reuse_buf)
{
ocs_hal_auto_xfer_rdy_buffer_t *buf;
sli4_sge_t *data;
if(!reuse_buf) {
buf = ocs_pool_get(hal->auto_xfer_rdy_buf_pool);
io->axr_buf = buf;
}
data = io->def_sgl.virt;
data[0].sge_type = SLI4_SGE_TYPE_SKIP;
data[0].last = 0;
/*
* Note: if we are doing DIF assists, then the SGE[1] must contain the
* DI_SEED SGE. The host is responsible for programming:
* SGE Type (Word 2, bits 30:27)
* Replacement App Tag (Word 2 bits 15:0)
* App Tag (Word 3 bits 15:0)
* New Ref Tag (Word 3 bit 23)
* Metadata Enable (Word 3 bit 20)
* Auto-Increment RefTag (Word 3 bit 19)
* Block Size (Word 3 bits 18:16)
* The following fields are managed by the SLI Port:
* Ref Tag Compare (Word 0)
* Replacement Ref Tag (Word 1) - In not the LBA
* NA (Word 2 bit 25)
* Opcode RX (Word 3 bits 27:24)
* Checksum Enable (Word 3 bit 22)
* RefTag Enable (Word 3 bit 21)
*
* The first two SGLs are cleared by ocs_hal_io_init_sges(), so assume eveything is cleared.
*/
if (hal->config.auto_xfer_rdy_p_type) {
sli4_diseed_sge_t *diseed = (sli4_diseed_sge_t*)&data[1];
diseed->sge_type = SLI4_SGE_TYPE_DISEED;
diseed->repl_app_tag = hal->config.auto_xfer_rdy_app_tag_value;
diseed->app_tag_cmp = hal->config.auto_xfer_rdy_app_tag_value;
diseed->check_app_tag = hal->config.auto_xfer_rdy_app_tag_valid;
diseed->auto_incr_ref_tag = TRUE; /* Always the LBA */
diseed->dif_blk_size = hal->config.auto_xfer_rdy_blk_size_chip;
} else {
data[1].sge_type = SLI4_SGE_TYPE_SKIP;
data[1].last = 0;
}
data[2].sge_type = SLI4_SGE_TYPE_DATA;
data[2].buffer_address_high = ocs_addr32_hi(io->axr_buf->payload.dma.phys);
data[2].buffer_address_low = ocs_addr32_lo(io->axr_buf->payload.dma.phys);
data[2].buffer_length = io->axr_buf->payload.dma.size;
data[2].last = TRUE;
data[3].sge_type = SLI4_SGE_TYPE_SKIP;
return 0;
}
/**
* @brief Return auto xfer ready buffers (while in RQ pair mode).
*
* @par Description
* The header and payload buffers are returned to the auto xfer rdy pool.
*
* @param hal Hardware context.
* @param seq Header/payload sequence buffers.
*
* @return Returns OCS_HAL_RTN_SUCCESS for success, an error code value for failure.
*/
static ocs_hal_rtn_e
ocs_hal_rqpair_auto_xfer_rdy_buffer_sequence_reset(ocs_hal_t *hal, ocs_hal_sequence_t *seq)
{
ocs_hal_auto_xfer_rdy_buffer_t *buf = seq->header->dma.alloc;
buf->data_cqe = 0;
buf->cmd_cqe = 0;
buf->fcfi = 0;
buf->call_axr_cmd = 0;
buf->call_axr_data = 0;
/* build a fake data header in big endian */
buf->hdr.info = FC_RCTL_INFO_SOL_DATA;
buf->hdr.r_ctl = FC_RCTL_FC4_DATA;
buf->hdr.type = FC_TYPE_FCP;
buf->hdr.f_ctl = fc_htobe24(FC_FCTL_EXCHANGE_RESPONDER |
FC_FCTL_FIRST_SEQUENCE |
FC_FCTL_LAST_SEQUENCE |
FC_FCTL_END_SEQUENCE |
FC_FCTL_SEQUENCE_INITIATIVE);
/* build the fake header DMA object */
buf->header.rqindex = OCS_HAL_RQ_INDEX_DUMMY_HDR;
buf->header.dma.virt = &buf->hdr;
buf->header.dma.alloc = buf;
buf->header.dma.size = sizeof(buf->hdr);
buf->header.dma.len = sizeof(buf->hdr);
buf->payload.rqindex = OCS_HAL_RQ_INDEX_DUMMY_DATA;
ocs_hal_rqpair_auto_xfer_rdy_dnrx_check(hal);
return OCS_HAL_RTN_SUCCESS;
}
/**
* @ingroup devInitShutdown
* @brief Free auto xfer rdy buffers.
*
* @par Description
* Frees the auto xfer rdy buffers.
*
* @param hal Hardware context allocated by the caller.
*
* @return Returns 0 on success, or a non-zero value on failure.
*/
static void
ocs_hal_rqpair_auto_xfer_rdy_buffer_free(ocs_hal_t *hal)
{
ocs_hal_auto_xfer_rdy_buffer_t *buf;
uint32_t i;
if (hal->auto_xfer_rdy_buf_pool != NULL) {
ocs_lock(&hal->io_lock);
for (i = 0; i < ocs_pool_get_count(hal->auto_xfer_rdy_buf_pool); i++) {
buf = ocs_pool_get_instance(hal->auto_xfer_rdy_buf_pool, i);
if (buf != NULL) {
ocs_dma_free(hal->os, &buf->payload.dma);
}
}
ocs_unlock(&hal->io_lock);
ocs_pool_free(hal->auto_xfer_rdy_buf_pool);
hal->auto_xfer_rdy_buf_pool = NULL;
}
}
/**
* @ingroup devInitShutdown
* @brief Configure the rq_pair function from ocs_hal_init().
*
* @par Description
* Allocates the buffers to auto xfer rdy and posts initial XRIs for this feature.
*
* @param hal Hardware context allocated by the caller.
*
* @return Returns 0 on success, or a non-zero value on failure.
*/
ocs_hal_rtn_e
ocs_hal_rqpair_init(ocs_hal_t *hal)
{
ocs_hal_rtn_e rc;
uint32_t xris_posted;
ocs_log_debug(hal->os, "%s: RQ Pair mode\n", __func__);
/*
* If we get this far, the auto XFR_RDY feature was enabled successfully, otherwise ocs_hal_init() would
* return with an error. So allocate the buffers based on the initial XRI pool required to support this
* feature.
*/
if (sli_get_auto_xfer_rdy_capable(&hal->sli) &&
hal->config.auto_xfer_rdy_size > 0) {
if (hal->auto_xfer_rdy_buf_pool == NULL) {
/*
* Allocate one more buffer than XRIs so that when all the XRIs are in use, we still have
* one to post back for the case where the response phase is started in the context of
* the data completion.
*/
rc = ocs_hal_rqpair_auto_xfer_rdy_buffer_alloc(hal, hal->config.auto_xfer_rdy_xri_cnt + 1);
if (rc != OCS_HAL_RTN_SUCCESS) {
return rc;
}
} else {
ocs_pool_reset(hal->auto_xfer_rdy_buf_pool);
}
/* Post the auto XFR_RDY XRIs */
xris_posted = ocs_hal_xri_move_to_port_owned(hal, hal->config.auto_xfer_rdy_xri_cnt);
if (xris_posted != hal->config.auto_xfer_rdy_xri_cnt) {
ocs_log_err(hal->os, "%s: post_xri failed, only posted %d XRIs\n", __func__, xris_posted);
return OCS_HAL_RTN_ERROR;
}
}
return 0;
}
/**
* @ingroup devInitShutdown
* @brief Tear down the rq_pair function from ocs_hal_teardown().
*
* @par Description
* Frees the buffers to auto xfer rdy.
*
* @param hal Hardware context allocated by the caller.
*/
void
ocs_hal_rqpair_teardown(ocs_hal_t *hal)
{
/* We need to free any auto xfer ready buffers */
ocs_hal_rqpair_auto_xfer_rdy_buffer_free(hal);
}