-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathconvert_predictions.py
93 lines (77 loc) · 3.22 KB
/
convert_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import json
import utils
import argparse
import imagesize
from tqdm import tqdm
from collections import defaultdict
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser(description='Convert Open Images annotations into MS Coco format')
parser.add_argument('-p', '--predictions', dest='predictions',
help='coco style prediction file (.json)',
type=str)
parser.add_argument('-i', '--image_dir', dest='image_dir',
default=None,
help='path to images',
type=str)
parser.add_argument('--subset',
type=str,
default=None,
choices=['train', 'validation', 'test-rvc2020'],
help='subsets to convert')
parser.add_argument('--task',
type=str,
default='bbox',
choices=['bbox'],
help='type of annotations (only bbox supported for now)')
args = parser.parse_args()
return args
args = parse_args()
assert args.subset or args.image_dir, "provide either a split to get image sized from data/ or the directory where the images are stored"
print('loading predictions')
predictions = json.load(open(args.predictions))
print('loading predictions ... Done')
if args.subset:
image_size_sourcefile = 'data/{}_sizes-00000-of-00001.csv'.format(args.subset)
original_image_sizes = utils.csvread(image_size_sourcefile)
image_size_dict = {x[0]: [int(x[1]), int(x[2])] for x in original_image_sizes[1:]}
image_ids = list(image_size_dict.keys())
image_ids.sort()
else:
image_size_dict = {}
images = os.listdir(args.image_dir)
image_ids = [os.path.splitext(x)[0] for x in images]
# prepare per instance information
img_pred_map = defaultdict(list)
for pred in tqdm(predictions, desc='Converting predictions '):
image_id = pred['image_id']
cat = pred['category_id']
# Extract height and width
image_size = image_size_dict.get(image_id, None)
if image_size is not None:
image_width, image_height = image_size
else:
filename = os.path.join(args.image_dir, image_id + '.jpg')
image_width, image_height = imagesize.get(filename)
image_size_dict[image_id] = image_width, image_height
xmin = pred['bbox'][0] / image_width
ymin = pred['bbox'][1] / image_height
xmax = xmin + pred['bbox'][2] / image_width
ymax = ymin + pred['bbox'][3] / image_height
conf = pred['score']
img_pred_map[image_id].append(f"{cat} {conf:.4f} {xmin:.4f} {ymin:.4f} {xmax:.4f} {ymax:.4f}")
# collect into per image strings
converted_predictions = [['ImageId', 'PredictionString']]
for image_id in image_ids:
results = img_pred_map[image_id]
result_string = ''
for result in results:
result_string += ' ' + result
converted_predictions.append([image_id, result_string[1:]])
outfile = os.path.splitext(args.predictions)[0] + '.csv'
print(f'savind converted predictions to {outfile}')
utils.csvwrite(converted_predictions, outfile)
print(f'savind converted predictions to {outfile} ... Done')