-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathutils.py
303 lines (241 loc) · 10.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import csv
import warnings
import imagesize
import numpy as np
import skimage.io as io
from tqdm import tqdm
from collections import defaultdict
def csvread(file):
if file:
with open(file, 'r', encoding='utf-8') as f:
csv_f = csv.reader(f)
data = []
for row in csv_f:
data.append(row)
else:
data = None
return data
def csvwrite(data, file):
with open(file, 'w', encoding='utf-8') as f:
writer = csv.writer(f)
for d in data:
writer.writerow(d)
def _url_to_license(licenses, mode='http'):
# create dict with license urls as
# mode is either http or https
# create dict
licenses_by_url = {}
for license in licenses:
# Get URL
if mode == 'https':
url = 'https:' + license['url'][5:]
else:
url = license['url']
# Add to dict
licenses_by_url[url] = license
return licenses_by_url
def _list_to_dict(list_data):
dict_data = []
columns = list_data.pop(0)
for i in range(len(list_data)):
dict_data.append({columns[j]: list_data[i][j] for j in range(len(columns))})
return dict_data
def convert_category_annotations(orginal_category_info):
categories = []
num_categories = len(orginal_category_info)
for i in range(num_categories):
cat = {}
cat['id'] = i + 1
cat['name'] = orginal_category_info[i][1]
cat['freebase_id'] = orginal_category_info[i][0]
categories.append(cat)
return categories
def convert_image_annotations(original_image_metadata,
original_image_annotations,
original_image_sizes,
image_dir,
categories,
licenses,
origin_info=False):
original_image_metadata_dict = _list_to_dict(original_image_metadata)
original_image_annotations_dict = _list_to_dict(original_image_annotations)
cats_by_freebase_id = {cat['freebase_id']: cat for cat in categories}
if original_image_sizes:
image_size_dict = {x[0]: [int(x[1]), int(x[2])] for x in original_image_sizes[1:]}
else:
image_size_dict = {}
# Get dict with license urls
licenses_by_url_http = _url_to_license(licenses, mode='http')
licenses_by_url_https = _url_to_license(licenses, mode='https')
# convert original image annotations to dicts
pos_img_lvl_anns = defaultdict(list)
neg_img_lvl_anns = defaultdict(list)
for ann in original_image_annotations_dict[1:]:
cat_of_ann = cats_by_freebase_id[ann['LabelName']]['id']
if int(ann['Confidence']) == 1:
pos_img_lvl_anns[ann['ImageID']].append(cat_of_ann)
elif int(ann['Confidence']) == 0:
neg_img_lvl_anns[ann['ImageID']].append(cat_of_ann)
#Create list
images = []
# loop through entries skipping title line
num_images = len(original_image_metadata_dict)
for i in tqdm(range(num_images), mininterval=0.5):
# Select image ID as key
key = original_image_metadata_dict[i]['ImageID']
# Copy information
img = {}
img['id'] = key
img['file_name'] = key + '.jpg'
img['neg_category_ids'] = neg_img_lvl_anns.get(key, [])
img['pos_category_ids'] = pos_img_lvl_anns.get(key, [])
if origin_info:
img['original_url'] = original_image_metadata_dict[i]['OriginalURL']
license_url = original_image_metadata_dict[i]['License']
# Look up license id
try:
img['license'] = licenses_by_url_https[license_url]['id']
except:
img['license'] = licenses_by_url_http[license_url]['id']
# Extract height and width
image_size = image_size_dict.get(key, None)
if image_size is not None:
img['width'], img['height'] = image_size
else:
filename = os.path.join(image_dir, img['file_name'])
img['width'], img['height'] = imagesize.get(filename)
# Add to list of images
images.append(img)
return images
def convert_instance_annotations(original_annotations, images, categories, start_index=0):
original_annotations_dict = _list_to_dict(original_annotations)
imgs = {img['id']: img for img in images}
cats = {cat['id']: cat for cat in categories}
cats_by_freebase_id = {cat['freebase_id']: cat for cat in categories}
annotations = []
annotated_attributes = [attr for attr in ['IsOccluded', 'IsTruncated', 'IsGroupOf', 'IsDepiction', 'IsInside'] if attr in original_annotations[0]]
num_instances = len(original_annotations_dict)
for i in tqdm(range(num_instances), mininterval=0.5):
# set individual instance id
# use start_index to separate indices between dataset splits
key = i + start_index
csv_line = i
ann = {}
ann['id'] = key
image_id = original_annotations_dict[csv_line]['ImageID']
ann['image_id'] = image_id
ann['freebase_id'] = original_annotations_dict[csv_line]['LabelName']
ann['category_id'] = cats_by_freebase_id[ann['freebase_id']]['id']
ann['iscrowd'] = False
xmin = float(original_annotations_dict[csv_line]['XMin']) * imgs[image_id]['width']
ymin = float(original_annotations_dict[csv_line]['YMin']) * imgs[image_id]['height']
xmax = float(original_annotations_dict[csv_line]['XMax']) * imgs[image_id]['width']
ymax = float(original_annotations_dict[csv_line]['YMax']) * imgs[image_id]['height']
dx = xmax - xmin
dy = ymax - ymin
ann['bbox'] = [round(a, 2) for a in [xmin , ymin, dx, dy]]
ann['area'] = round(dx * dy, 2)
for attribute in annotated_attributes:
ann[attribute.lower()] = int(original_annotations_dict[csv_line][attribute])
annotations.append(ann)
return annotations
def _id_to_rgb(array):
B = array // 256**2
rest = array % 256**2
G = rest // 256
R = rest % 256
return np.stack([R, G, B], axis=-1).astype('uint8')
def _get_mask_file(segment, mask_dir):
name = "{}_{}_{}.png".format(
segment["ImageID"], segment["LabelName"].replace('/',''), segment["BoxID"])
return os.path.join(mask_dir, name)
def _combine_small_on_top(masks):
combined = np.zeros(shape=masks[0].shape, dtype='uint32')
sizes = [np.sum(m != 0) for m in masks]
for idx in np.argsort(sizes)[::-1]:
mask = masks[idx]
combined[mask != 0] = mask[mask != 0]
return combined
def _greedy_combine(masks):
combined = np.zeros(shape=masks[0].shape, dtype='uint32')
for maks in maksk:
combined[mask != 0] = mask[mask != 0]
return combined
def convert_segmentation_annotations(original_segmentations, images, categories, original_mask_dir, segmentation_out_dir, start_index=0):
original_segmentations_dict = _list_to_dict(original_segmentations)
if not os.path.isdir(segmentation_out_dir):
os.mkdir(segmentation_out_dir)
image_ids = list(np.unique([ann['ImageID'] for ann in original_segmentations_dict]))
filtered_images = [img for img in images if img['id'] in image_ids]
imgs = {img['id']: img for img in filtered_images}
cats = {cat['id']: cat for cat in categories}
cats_by_freebase_id = {cat['freebase_id']: cat for cat in categories}
for i in range(len(original_segmentations_dict)):
original_segmentations_dict[i]["SegmentID"] = i + 1
img_segment_map = defaultdict(list)
for segment in original_segmentations_dict:
img_segment_map[segment["ImageID"]].append(segment)
annotations = []
segment_index = 0 + start_index
for img in tqdm(filtered_images, mininterval=0.5):
ann = dict()
ann['file_name'] = img['file_name']
ann['image_id'] = img['id']
ann['segments_info'] = []
masks = []
for segment in img_segment_map[img['id']]:
# collect mask
mask_file = _get_mask_file(segment, original_mask_dir)
mask = io.imread(mask_file)# load png
# exclude empty masks
if np.max(mask) == 0:
continue
mask = mask // 255 # set to [0,1]
mask = mask * segment["SegmentID"]
masks.append(mask)
# collect segment info
segment_info = {}
# Compute bbox coordinates
xmin = float(segment['BoxXMin']) * img['width']
ymin = float(segment['BoxYMin']) * img['height']
xmax = float(segment['BoxXMax']) * img['width']
ymax = float(segment['BoxYMax']) * img['height']
dx = xmax - xmin
dy = ymax - ymin
# Fill in annotations
segment_info['bbox'] = [round(a, 2) for a in [xmin , ymin, dx, dy]]
segment_info['area'] = round(dx * dy, 2)
segment_info['category_id'] = cats_by_freebase_id[segment['LabelName']],
segment_info['id'] = segment_index
segment_index += 1
# append
ann['segments_info'].append(segment_info)
# combined_binary_mask = sum(masks)
# Looks like many masks overlap
# currently managed by greedy combining
combined_binary_mask = _combine_small_on_top(masks)
# check if masks overlap. If they do we have a problem
ids_in_mask = len(np.unique(combined_binary_mask[combined_binary_mask != 0]))
num_segments = len(img_segment_map[img['id']])
if ids_in_mask != num_segments:
print("Overlapping masks in image {}".format(ann['image_id']))
values_in_output = np.unique(combined_binary_mask[combined_binary_mask != 0])
ids_in_segments = [segment["SegmentID"] for segment in img_segment_map[img['id']]]
not_in_segments = [x for x in values_in_output if x not in ids_in_segments]
not_in_values = [x for x in ids_in_segments if x not in values_in_output]
print("Not in segments: {}".format(not_in_segments))
print("Not in pixel values: {}".format(not_in_values))
# don't include the annotation into the output
continue
combined_rgb_mask = _id_to_rgb(combined_binary_mask)
out_file = os.path.join(segmentation_out_dir, "{}.png".format(ann['image_id']))
with warnings.catch_warnings():
warnings.simplefilter("ignore")
io.imsave(out_file, combined_rgb_mask)
annotations.append(ann)
return annotations
def filter_images(images, annotations):
image_ids = list(np.unique([ann['image_id'] for ann in annotations]))
filtered_images = [img for img in images if img['id'] in image_ids]
return filtered_images