-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
521 lines (441 loc) · 21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
import os
import chainlit as cl
from openai import AsyncOpenAI
from anthropic import AsyncAnthropic
import httpx
from dotenv import load_dotenv
import requests
import json
import logging
import tracemalloc
import asyncio
import subprocess
import re
import plotly.graph_objects as go
import pandas as pd
import httpx
import aiohttp
from datetime import datetime, timedelta
# Enable tracemalloc
tracemalloc.start()
# Add these variables at the top of your file
OLLAMA_MAX_RETRIES = 3
OLLAMA_RETRY_DELAY = 2 # seconds
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# AI Provider and Model settings
AI_PROVIDER = os.getenv("AI_PROVIDER", "openai").lower()
AI_MODEL = os.getenv("AI_MODEL", "gpt-4o")
OLLAMA_BASE_URL = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")
# Initialize AI clients
if AI_PROVIDER == "openai":
ai_client = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"))
cl.instrument_openai()
elif AI_PROVIDER == "anthropic":
ai_client = AsyncAnthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
elif AI_PROVIDER == "ollama":
ai_client = httpx.AsyncClient(base_url=OLLAMA_BASE_URL)
else:
raise ValueError(f"Unsupported AI provider: {AI_PROVIDER}")
# Mempool API base URL
MEMPOOL_API_BASE = "https://mempool.space/api"
# AI settings
AI_SETTINGS = {
"temperature": 0.7,
"max_tokens": 1500
}
async def query_historical_price(timestamp, currency='USD'):
"""Query the Mempool API for historical price data."""
params = {
'timestamp': int(timestamp),
'currency': currency
}
data = await query_mempool_api("/v1/historical-price", params)
return data
async def query_current_price():
"""Query the Mempool API for current price data."""
return await query_mempool_api("/v1/prices")
async def create_bitcoin_price_graph(start_price, end_price, currency, time_period):
"""Create a graph of Bitcoin price change."""
start_time = datetime.now() - timedelta(days=30) # Assuming 1 month for this example
end_time = datetime.now()
df = pd.DataFrame([
{'timestamp': start_time, 'price': start_price},
{'timestamp': end_time, 'price': end_price}
])
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['timestamp'], y=df['price'], mode='lines+markers', name=f'Bitcoin Price in {currency}'))
fig.update_layout(
title=f'Bitcoin Price Change in {currency} over the last {time_period}',
xaxis_title='Date',
yaxis_title=f'Price ({currency})',
height=600,
width=800
)
img_bytes = fig.to_image(format="png")
return img_bytes
def parse_time_period(query):
"""Parse the time period from the user query."""
time_periods = {
'day': 1,
'week': 7,
'month': 30,
'year': 365
}
for period, days in time_periods.items():
if period in query or f"{days} days" in query:
return timedelta(days=days), period
return timedelta(days=30), 'month' # Default to 1 month if no period is specified
async def check_ollama_model():
"""Check if the specified Ollama model is available using the command-line."""
if hasattr(check_ollama_model, "result"):
return check_ollama_model.result
for attempt in range(OLLAMA_MAX_RETRIES):
try:
result = subprocess.run(["ollama", "list"], capture_output=True, text=True)
if AI_MODEL in result.stdout:
logger.info(f"Ollama model {AI_MODEL} is available.")
check_ollama_model.result = True
return True
else:
logger.warning(f"Ollama model {AI_MODEL} is not available.")
check_ollama_model.result = False
return False
except Exception as e:
logger.error(f"Error checking Ollama model (attempt {attempt + 1}): {str(e)}")
if attempt < OLLAMA_MAX_RETRIES - 1:
await asyncio.sleep(OLLAMA_RETRY_DELAY)
else:
check_ollama_model.result = False
return False
async def query_mempool_api(endpoint, params=None):
"""Query the Mempool API and return the response."""
url = f"{MEMPOOL_API_BASE}{endpoint}"
logger.info(f"Attempting to query Mempool API: {url}")
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params, timeout=15) as response:
logger.info(f"API request status: {response.status}")
response.raise_for_status()
data = await response.json()
logger.info(f"API request successful: {url}")
logger.debug(f"API response data: {data}")
return data
except aiohttp.ClientError as e:
logger.error(f"API request failed: {url}. Error: {str(e)}")
return None
except Exception as e:
logger.error(f"Unexpected error in API request: {url}. Error: {str(e)}")
return None
async def generate_ai_response(messages):
"""Generate AI response using the configured provider."""
try:
if AI_PROVIDER == "openai":
stream = await ai_client.chat.completions.create(
model=AI_MODEL,
messages=messages,
**AI_SETTINGS
)
full_response = ""
async for chunk in stream:
if chunk.choices[0].delta.content is not None:
full_response += chunk.choices[0].delta.content
return full_response
elif AI_PROVIDER == "anthropic":
system_message = next((msg['content'] for msg in messages if msg['role'] == 'system'), '')
user_message = next((msg['content'] for msg in messages if msg['role'] == 'user'), '')
response = await ai_client.messages.create(
model=AI_MODEL,
system=system_message,
messages=[
{"role": "user", "content": user_message}
],
**AI_SETTINGS
)
return response.content[0].text
elif AI_PROVIDER == "ollama":
model_available = await check_ollama_model()
if not model_available:
return f"Error: The specified Ollama model '{AI_MODEL}' is not available. Please check your configuration or pull the model manually."
for attempt in range(OLLAMA_MAX_RETRIES):
try:
async with httpx.AsyncClient(base_url=OLLAMA_BASE_URL, timeout=30.0) as client:
response = await client.post("/api/chat", json={
"model": AI_MODEL,
"messages": messages,
**AI_SETTINGS
})
response.raise_for_status()
response_text = response.text
logger.debug(f"Ollama raw response: {response_text}")
try:
response_json = json.loads(response_text)
return response_json.get("message", {}).get("content", "")
except json.JSONDecodeError:
# Handle streaming response
response_lines = response_text.strip().split('\n')
full_response = ""
for line in response_lines:
try:
chunk = json.loads(line)
full_response += chunk.get("message", {}).get("content", "")
except json.JSONDecodeError:
continue
return full_response
except (httpx.RequestError, httpx.HTTPStatusError) as e:
logger.error(f"Ollama request failed (attempt {attempt + 1}): {str(e)}")
if attempt < OLLAMA_MAX_RETRIES - 1:
await asyncio.sleep(OLLAMA_RETRY_DELAY)
else:
raise
except Exception as e:
logger.error(f"AI response generation failed. Error: {str(e)}", exc_info=True)
return f"I'm sorry, but I encountered an error while processing your request: {str(e)}"
async def process_user_query(query):
"""Process user query and determine which API endpoint to use."""
query = query.lower()
# Pattern for historical price queries
historical_price_pattern = r'(bitcoin|btc) price.*(over|for|in|during).*?(last|past|previous)'
match = re.search(historical_price_pattern, query)
if match:
time_delta, time_period = parse_time_period(query)
end_time = datetime.now()
start_time = end_time - time_delta
currency = 'USD' # Default to USD, but you could extract this from the query too
if 'eur' in query:
currency = 'EUR'
elif 'gbp' in query:
currency = 'GBP'
try:
historical_data = await query_historical_price(int(start_time.timestamp()), currency)
current_data = await query_current_price()
start_price = historical_data['prices'][0][currency]
end_price = current_data[currency]
return "price_change", (start_price, end_price), (currency, time_period)
except Exception as e:
logger.error(f"Error fetching price data: {str(e)}")
return "error", str(e), None
# Pattern for mempool fee queries
mempool_fee_pattern = r'(mempool|transaction) fee.*(over|for|in|during).*?(last|past|previous)'
match = re.search(mempool_fee_pattern, query)
if match:
time_delta, time_period = parse_time_period(query)
try:
mempool_data = await query_mempool_api("/mempool")
return "mempool_fees", mempool_data, time_period # Return full mempool data
except Exception as e:
logger.error(f"Error fetching mempool data: {str(e)}")
return "error", str(e), None
# Define patterns for various intents
patterns = {
'transaction_details': r'(?:transaction|tx).*?([a-fA-F0-9]{64})',
'address_info': r'(?:address|wallet).*?([13][a-km-zA-HJ-NP-Z1-9]{25,34})',
'block_info': r'block.*?([a-fA-F0-9]{64})',
'block_height': r'block.*?height.*?(\d+)',
'bitcoin_price': r'(?:bitcoin|btc).*?(?:price|value|worth)',
'mempool_info': r'mempool',
'hashrate': r'(?:hash ?rate|mining power)',
'difficulty': r'difficulty',
'fees': r'(?:transaction )?fees?',
}
# Check for matches
for intent, pattern in patterns.items():
match = re.search(pattern, query)
if match:
try:
if intent == 'transaction_details':
txid = match.group(1)
data = await query_mempool_api(f"/tx/{txid}")
return intent, data, txid
elif intent == 'address_info':
address = match.group(1)
txs_data = await query_mempool_api(f"/address/{address}/txs")
utxo_data = await query_mempool_api(f"/address/{address}/utxo")
return intent, {"transactions": txs_data, "utxos": utxo_data}, address
elif intent == 'block_info':
block_hash = match.group(1)
data = await query_mempool_api(f"/block/{block_hash}")
return intent, data, block_hash
elif intent == 'block_height':
height = match.group(1)
data = await query_mempool_api(f"/block-height/{height}")
return intent, data, height
elif intent == 'bitcoin_price':
data = await query_mempool_api("/v1/prices")
return intent, data, None
elif intent == 'mempool_info':
data = await query_mempool_api("/mempool")
return intent, data, None
elif intent == 'hashrate':
data = await query_mempool_api("/v1/mining/hashrate/3m")
return intent, data, None
elif intent == 'difficulty':
data = await query_mempool_api("/v1/mining/difficulty-adjustments")
return intent, data, None
elif intent == 'fees':
data = await query_mempool_api("/v1/fees/recommended")
return intent, data, None
except Exception as e:
logger.error(f"Error processing {intent} query: {str(e)}")
return "error", str(e), None
# If no specific intent is matched, return a general intent
return "general", None, None
# Update the main function to use the new process_user_query
async def create_mempool_graph(mempool_data):
fee_histogram = mempool_data.get('fee_histogram', [])
# Extract fee rates and counts
fee_rates = [entry[0] for entry in fee_histogram]
counts = [entry[1] for entry in fee_histogram]
# Create a DataFrame for easier manipulation
df = pd.DataFrame({'fee_rate': fee_rates, 'count': counts})
# Sort by fee rate and calculate cumulative sum
df = df.sort_values('fee_rate')
df['cumulative'] = df['count'].cumsum()
# Create the plot
fig = go.Figure()
# Add bar chart for transaction count
fig.add_trace(go.Bar(
x=df['fee_rate'],
y=df['count'],
name='Transaction Count',
marker_color='blue',
opacity=0.7
))
# Add line chart for cumulative distribution
fig.add_trace(go.Scatter(
x=df['fee_rate'],
y=df['cumulative'],
name='Cumulative Distribution',
yaxis='y2',
line=dict(color='red', width=2)
))
# Update layout
fig.update_layout(
title='Mempool Fee Distribution',
xaxis_title='Fee Rate (sat/vB)',
yaxis_title='Transaction Count',
yaxis2=dict(
title='Cumulative Count',
overlaying='y',
side='right'
),
barmode='overlay',
legend=dict(x=0.1, y=1.1, orientation='h'),
height=600,
width=800
)
# Save the figure as a PNG image
img_bytes = fig.to_image(format="png")
return img_bytes
@cl.on_message
async def main(message: cl.Message):
query = message.content
logger.info(f"Received user query: {query}")
# Direct API call test
logger.info("Attempting direct API call to Mempool")
direct_api_result = await query_mempool_api("/v1/prices")
if direct_api_result:
logger.info(f"Direct API call successful. Result: {direct_api_result}")
else:
logger.error("Direct API call failed")
# Process the query to get relevant API data
intent, api_data, extra_info = await process_user_query(query)
logger.info(f"Processed query. Intent: {intent}, Extra info: {extra_info}")
if intent == "price_change":
start_price, end_price = api_data
currency, time_period = extra_info
try:
img_bytes = await create_bitcoin_price_graph(start_price, end_price, currency, time_period)
await cl.Message(content=f"Here's a graph of the Bitcoin price change in {currency} over the last {time_period}:").send()
await cl.Message(content="", elements=[
cl.Image(name="bitcoin_price_graph", content=img_bytes, mime="image/png")
]).send()
except Exception as e:
logger.error(f"Error creating Bitcoin price graph: {str(e)}")
await cl.Message(content=f"I'm sorry, I couldn't create the graph due to an error: {str(e)}").send()
elif intent == "mempool_fees":
mempool_data = api_data
time_period = extra_info
try:
img_bytes = await create_mempool_graph(mempool_data)
await cl.Message(content=f"Here's a graph of the mempool fee distribution:").send()
await cl.Message(content="", elements=[
cl.Image(name="mempool_fee_graph", content=img_bytes, mime="image/png")
]).send()
except Exception as e:
logger.error(f"Error creating mempool fee graph: {str(e)}")
await cl.Message(content=f"I'm sorry, I couldn't create the graph due to an error: {str(e)}").send()
elif intent == "error":
await cl.Message(content=f"I'm sorry, I encountered an error while processing your request: {api_data}").send()
# Prepare the context for the AI
if intent == "price_change":
context = f"User query: {query}\n\nIntent: {intent}\n\nRelevant Bitcoin data: Start price: {api_data[0]}, End price: {api_data[1]}, Currency: {extra_info[0]}, Time period: {extra_info[1]}\n\nYou are a Bitcoin expert in explaining Bitcoin price changes. Please provide a helpful response based on this information, explaining the price change if necessary. A graph has been generated showing the price change, so please refer to it in your explanation."
elif intent == "mempool_fees":
context = f"User query: {query}\n\nIntent: {intent}\n\nRelevant Bitcoin data: Mempool fee distribution data\n\nYou are a Bitcoin expert in explaining mempool fees. Please provide a helpful response based on this information, explaining the fee distribution if necessary. A graph has been generated showing the fee distribution, so please refer to it in your explanation."
else:
context = f"User query: {query}\n\nIntent: {intent}\n\nRelevant Bitcoin data: {json.dumps(api_data, indent=2)}\n\nAdditional info: {extra_info}\n\nYou are a Bitcoin expert. Please provide a helpful response based on this information, explaining the data if necessary."
# Create a new message for streaming
msg = cl.Message(content="")
await msg.send()
# Generate AI response
system_message = "You are a friendly and knowledgeable AI assistant specializing in Bitcoin and blockchain technology, but also capable of general conversation. You have direct access to mempool api that returns bitcoin data, When asked about Bitcoin, provide accurate and helpful information, explaining technical concepts in an easy-to-understand manner. For other topics, engage in a natural, conversational manner."
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": context}
]
try:
if AI_PROVIDER == "openai":
stream = await ai_client.chat.completions.create(
model=AI_MODEL,
messages=messages,
stream=True,
**AI_SETTINGS
)
async for chunk in stream:
if chunk.choices[0].delta.content is not None:
await msg.stream_token(chunk.choices[0].delta.content)
elif AI_PROVIDER == "anthropic":
response = await generate_ai_response(messages)
await msg.stream_token(response)
elif AI_PROVIDER == "ollama":
response = await generate_ai_response(messages)
await msg.stream_token(response)
else:
raise ValueError(f"Unsupported AI provider: {AI_PROVIDER}")
await msg.send() # Finalize the message
except asyncio.TimeoutError:
logger.error("Request to AI provider timed out")
await msg.update() # Clear the existing message content
await cl.Message(content="I'm sorry, but the request timed out. Please try again later.").send()
except Exception as e:
logger.error(f"Error in main function: {str(e)}", exc_info=True)
await msg.update() # Clear the existing message content
await cl.Message(content=f"An error occurred while generating the response: {str(e)}").send()
@cl.on_chat_start
async def start():
if AI_PROVIDER == "ollama":
model_available = await check_ollama_model()
if not model_available:
await cl.Message(content=f"Warning: The specified Ollama model '{AI_MODEL}' is not available. Please check your configuration or pull the model manually.").send()
else:
await cl.Message(content=f"Ollama model '{AI_MODEL}' is available and ready to use.").send()
welcome_message = f"""
# 🪙 Welcome to the ₿itcoin Mempool AI Assistant!
Hello! I'm your friendly AI assistant specializing in Bitcoin and blockchain technology. I'm here to chat about anything, but I have particular expertise in:
1. 📈 ₿itcoin prices and market trends
2. 🔗 ₿lockchain technology and how it works
3. 💼 ₿itcoin transactions and the mempool
4. ⛏️ Mining and network statistics
5. 🌐 General cryptocurrency topics
Feel free to ask me about these topics or anything else you'd like to discuss!
---
**Current Configuration:**
- AI Provider: `{AI_PROVIDER.capitalize()}`
- AI Model: `{AI_MODEL}`
---
💡 **Tip**: Try asking about a specific ₿itcoin transaction, address, or the current market price!
"""
await cl.Message(content=welcome_message).send()