-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathwind.py
39 lines (33 loc) · 1.22 KB
/
wind.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Author: Bojan G. Kalicanin
# Date: 26-Dec-2016
# 16-4. Explore: Generate a few more visualizations that examine any
# other weather aspect you’re interested in for any locations you’re
# curious about.
import csv
from datetime import datetime
from matplotlib import pyplot as plt
with open('moscow_nov_2015-2016.csv') as f_obj:
reader = csv.reader(f_obj)
header_row = next(reader)
dates, wind_maxs, wind_means = [], [], []
for row in reader:
try:
wind_max = int(row[16])
wind_avg = int(row[17])
current_date = datetime.strptime(row[0], '%Y-%m-%d')
except ValueError:
print(current_date, 'missing_data')
else:
wind_maxs.append(wind_max)
dates.append(current_date)
wind_means.append(wind_avg)
fig = plt.figure(dpi=110, figsize=(10, 6))
plt.plot(dates, wind_maxs, c='red', alpha=0.5)
plt.plot(dates, wind_means, c='blue', alpha=0.5)
plt.fill_between(dates,wind_maxs, wind_means, facecolor='blue', alpha=0.1)
fig.autofmt_xdate()
plt.title("Daily high and avg wind speed", fontsize=24)
plt.xlabel('', fontsize=14)
plt.ylabel("Speed [km/h]", fontsize=14)
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()