forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderivatives.yaml
3131 lines (2470 loc) · 169 KB
/
derivatives.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Defines derivative formulas and Python signatures of methods on Variable
#
# Note about possibly confusing nomenclature: An 'output gradient' is the
# gradient of an output of a forward function. Output gradients are used as
# the inputs to backward functions. `grads` is a vector of output gradients,
# and `grad == grads[0]`, in all the derivative formulas in this file.
# An 'input gradient' is the gradient of an input to a forward function.
# Input gradients are the outputs of backward functions, corresponding to the
# input names included in the derivative formulas defined in this file.
# Also, every time we talk computing "gradient" we actually mean computing
# the vector jacobian product using the given 'output gradient' as the vector.
#
# Each entry consists of:
# - A 'name', which specifies the ATen name of the function you
# are defining derivatives for, and an argument specification.
# - An optional 'dispatch' entry which can be used to specify
# per-autograd dispatch key derivatives. If this entry is not
# specified, then the gradient entries will be taken as the
# default gradients (i.e. registered for every backward dispatch
# key). (see _test_autograd_multiple_dispatch for an example
# of how to register separate derivates for different dispatch keys).
# The list of allowed dispatch keys (in addition to 'Default' which
# represents the Autograd alias key) is torchgen/model.py:AUTOGRAD_KEYS.
# - One or more gradients entries, mapping differentiable input
# names to a formula specifying how to compute its gradient.
# Note that a single gradient entry can specify the gradient
# formula for multiple input names, by specifying a key
# "input1, input2" (see atan2 for an example).
# - An argument can be flagged as 'non_differentiable'.
# - Optional entry with key 'output_differentiability' and value a list of the
# same length as the number of outputs from the forward function. The list
# should contain only booleans, specifying whether each of the output Tensor
# is differentiable.
# If it is not specified for a function that returns multiple elements but
# uses `grad` instead of `grads[idx]`, then all but the first output will
# be marked as non-differentiable.
# If None of the output is differentiable, you can also add the function
# name to `gen_variable_type.py`'s `DONT_REQUIRE_DERIVATIVE` list.
#
# There are two cases for Tensor and TensorList arguments here:
# - If that argument is differentiable, in the sense that a gradient with respect
# to that argument could exist. You should either:
# - Specify the formula for that gradient
# - Specify not_implemented("function_name") as a formula to say that this is not
# implemented yet (but might be in the future and the user can request that on an issue)
# - If that argument is not differentiable, because it is not a floating point dtype or the
# function is not differentiable with respect to that argument for
# example. You should either:
# - Do not specify any formula for this argument
# - Specify explicitly that this argument is "non_differentiable". Note that in this case,
# we trust you that this argument will never have requires_grad=True and it will be silently
# ignored if it does.
#
# If a function has out-of-place and in-place variants, then the derivative
# definition for the in-place variant is optional. It will default to the
# definition for the out-of-place variant. Note that _out variants are never
# differentiable.
#
# Gradient expressions are standard C++ expressions operating on ATen
# variables. In a gradient expression, the following variables/functions
# are in scope:
#
# - 'grad', the gradient of the output (often spelled grad_output
# in Python) which we are going to left-multiply.
#
# When a function returns multiple *differentiable* outputs,
# you can refer to the gradients of each outputs using 'grads',
# e.g., 'grads[0]', 'grads[1]'.
#
# When a function returns multiple *differentiable* outputs that
# are named, you can refer to the gradients of each outputs using
# 'grad_{name}', e.g., 'grad_x', 'grad_y'.
#
# When a function returns *one* differentiable output (the
# first output) and some more nondifferentiable outputs,
# you MUST refer to the gradient of the differentiable output with
# 'grad' (this case is special-cased in our code generation).
#
# Note that the number of differentibale outputs can be modified by the
# 'output_differentiability' entry (see above).
#
# Across a differentiable function's derivatives set, it is not
# permitted to mix the use of "grad", "grads", and
# "grad_{name}". You must be consistent for that differentiable
# function.
#
# - Any of the input arguments, tensor or non-tensor, including
# argument names that only appear in Declarations.yaml, e.g. 'output'.
#
# - 'result', representing the result of evaluating the forward
# expression for ATen native function declarations. If the forward
# expression outputs a tuple, use 'resultX' instead to access the
# X-th entry
#
# - 'grad_input_mask', a std::array<bool, n>, specifies which input
# gradients are actually needed. For example, in the entry
# `input0, input1: foo(grad_input_mask)`, `grad_input_mask` is a size
# two array, where `grad_input_mask[0]` is true if `input0` requires
# grad, and `grad_input_mask[1]` is true if `input1` requires grad.
#
# (NB: if your function computes gradient for a list of tensors,
# the `grad_input_mask` will only have a single entry for the list
# specifying if either zero or at least one tensor from the list requires
# grad. If we want to support more fine-grained signalling,
# we'll need some alternate variable which is not a std::array)
#
# - 'retain_variables', a bool which is true if a user has specified
# that saved variables should be retained in case the backwards is
# run again later. This allows an optimization where we can
# destroy saved buffers if we know variables are not going to be retained,
# e.g., it is used by _cudnn_rnn
#
# - `wrap_opt_if`, is a 2-argument function that accepts a tensor
# variable and a boolean condition that dictates whether to save that
# variable in a graph. The result of this function is `c10::optional<Tensor>`,
# and it is `c10::nullopt` when the condition evalutes to `false`,
# otherwise it is the variable wrapped in `c10::optional<Tensor>`.
# For example, wrap_opt_if(var_0, grad_input_mask[1] || grad_input_mask[2])
# would mean that `var_0` is saved as long as the second (grad_input_mask[1])
# or the third (grad_input_mask[2]) argument requires gradients.
# Another interpretation of this expression would read as `var_0` is needed
# in the backward computation of the second or the third argument.
# NOTE: the usage of `var_i.requires_grad()` in the conditional expression
# is not supported, use `grad_input_mask[i]` instead.
# NOTE: `wrap_opt_if` could be used to prevent saving redundant variables
# with multi-output backward formulas.
# See https://github.com/pytorch/pytorch/issues/97575 for more details
# on the issue.
#
# If you need a complex expression, e.g., with local variables,
# write a _backward function in torch/csrc/autograd/FunctionsManual.cpp
# and invoke it from here. By the way, go read
# https://github.com/zdevito/ATen/issues/163; this describes an
# important hazard that occurs when porting backwards from Python to C++
#
# Double backwards gradient expressions can be somewhat confusing;
# the most important thing to remember is: (1) you need to define a
# derivative formula for every input, including inputs named things
# like 'grad_output', and (2) the gradient to multiply with is always
# called 'grad' (even though it really is a grad-grad).
#
# You can also add forward derivative definition by defining a formula for
# a returned value (in general "result" if the name is not specified). This
# formula works the same way as the backward one and advanced implementations
# should also be placed in the FunctionsManual file.
# This formula should compute a single Jacobian vector product using the (primal)
# value of the argument "foo_p", its forward grad "foo_t" and the result of the
# function as "result".
# Note that the forward derivative can be automatically generated in two cases:
# - if your function is linear (NOT affine or multi-linear), then you can
# specify so by just using the string "auto_linear" for the formula.
# - if your function is applied element wise (and has a single input), you
# can specify so by just using the string "auto_element_wise" for the formula.
#
# Note that to avoid unpacking overhead, functions taking TensorList as inputs
# will always have their forward grad formula called. This function is responsible
# to check if any computation is needed and should return an undefined Tensor when
# there is nothing to do. You can check "cat_forward" for a full example.
#
# NB: There are a number of gradient definitions in here which are bogus
# (implemented using zeros_like). These gradients are (hopefully) not
# used by our frontend. You MUST check the frontend code; search for
# OpName.apply to see if it's still using a legacy Python style API.
#
# Note: Returning views.
# The following cases exist:
# - If a function returns no view, it can have arbitrary outputs.
# - If a function return at least one Tensor that is a differentiable view
# of one of its input:
# - If there is only one differentiable output, this Tensor is marked as a
# differentiable view. (alias or transpose for example)
# - If there are more than one differentiable output, by default all the views are
# marked as differentiable views and created with allow_rebase_history=false.
# Meaning that any inplace operation on it will raise an error. (unbind for example)
#
# Notes about undefined output gradients:
# All backward functions must support all combinations of undefined output
# gradient Tensors, where `grad[i].defined() == false`. Depending on the
# number of input and output grads your derivative formula uses, code
# generation may automatically add some level of undefined grad support,
# according to these three cases:
#
# * 1 input grad and 1 output grad:
# Complete undefined grad support is automatically added, so you
# shouldn't have to think about it, unless there is a bug in the code
# generation.
#
# * 1 input grad and multiple output grads:
# Undefined grad support is automatically added ONLY in the case where
# all output grads are undefined. You will have to add explicit support
# for cases where a subset of output grads is undefined.
#
# * multiple input grads:
# No automatic support, so you will need to add it.
#
# If your derivative formula uses more than one output grad, it is usually
# preferable to add undefined grad support in the backward function itself
# (if you're using one), rather than in the derivative formula in this file.
#
# Undefined Tensors are created with the default constructor `at::Tensor()`.
# It is an efficient way to represent a Tensor filled with zeros because
# the Tensor holds no sizing information and no Storage data is allocated.
# But consequentially, Tensor operations cannot be performed on them.
# Therefore, your backward function should treat an undefined output grad as
# a zero, and it needs to be a special case.
#
# If all output grads are undefined, then it should be correct for the
# backward function to return undefined input grads. Since we use the chain
# rule, output grads equal to zero should result in input grads equal to zero,
# unless there is some rare special case.
#
# If a subset of output grads is undefined, then it may be acceptable for
# the backward function to return undefined input grads--it depends on the
# specific function, so you'll have to determine that yourself. If returning
# an undefined Tensor is correct for a given input grad, it is also logically
# correct to return a defined grad full of zeros, but that would not be
# preferable since it would be less efficient.
#
# NB: The parameter names here MUST be consistent with the parameter names
# in native_functions.yaml
- name: abs(Tensor self) -> Tensor
self: grad * self.sgn()
result: handle_r_to_c(result.scalar_type(), self_t.conj() * self_p.sgn())
- name: acos(Tensor self) -> Tensor
self: grad * -((-self * self + 1).rsqrt()).conj()
result: auto_element_wise
- name: add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
self: handle_r_to_c(self.scalar_type(), grad)
other: handle_r_to_c(other.scalar_type(), maybe_multiply(grad, alpha.conj()))
result: self_t + maybe_multiply(other_t, alpha)
- name: add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor
self: handle_r_to_c(self.scalar_type(), grad)
result: self_t.clone()
- name: addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta.conj())
batch1: maybe_multiply(grad.unsqueeze(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), batch2.sym_size(2) }).bmm(batch2.transpose(1, 2).conj()), alpha.conj())
batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad.unsqueeze(0).expand_symint({ batch1.sym_size(0), batch1.sym_size(1), batch2.sym_size(2) })), alpha.conj())
result: maybe_multiply(self_t, beta) + maybe_multiply(batch1_t.bmm(batch2_p).sum(0), alpha) + maybe_multiply(batch1_p.bmm(batch2_t).sum(0), alpha)
- name: addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
self: handle_r_to_c(self.scalar_type(), grad)
tensor1: handle_r_to_c(tensor1.scalar_type(), grad * (value / tensor2).conj())
tensor2: handle_r_to_c(tensor2.scalar_type(), -grad * (value * tensor1 / (tensor2 * tensor2)).conj())
result: self_t + maybe_multiply(tensor1_t / tensor2_p, value) - maybe_multiply(tensor2_t * (tensor1_p / tensor2_p) / tensor2_p, value)
- name: addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor
self: handle_r_to_c(self.scalar_type(), grad)
tensor1: handle_r_to_c(tensor1.scalar_type(), grad * (tensor2 * value).conj())
tensor2: handle_r_to_c(tensor2.scalar_type(), grad * (tensor1 * value).conj())
result: self_t + maybe_multiply(tensor1_t * tensor2_p, value) + maybe_multiply(tensor2_t * tensor1_p, value)
- name: addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta.conj())
mat1: mm_mat1_backward(grad, mat2, mat1.sym_sizes(), mat1.sym_strides(), mat1.layout(), alpha)
mat2: mm_mat2_backward(grad, mat1, mat2.sym_sizes(), mat2.sym_strides(), mat2.layout(), alpha)
result: maybe_multiply(self_t, beta) + maybe_multiply(mat1_t.mm(mat2_p), alpha) + maybe_multiply(mat1_p.mm(mat2_t), alpha)
- name: _sparse_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta)
mat1: mm_mat1_sparse_backward(grad, mat1, mat2, alpha)
mat2: mm_mat2_backward(grad, mat1, mat2.sym_sizes(), mat2.sym_strides(), mat2.layout(), alpha)
- name: addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta.conj())
mat: maybe_multiply(grad.ger(vec.conj()), alpha.conj())
vec: maybe_multiply(mat.t().conj().mv(grad), alpha.conj())
result: maybe_multiply(self_t, beta) + maybe_multiply(mat_t.mv(vec_p), alpha) + maybe_multiply(mat_p.mv(vec_t), alpha)
- name: addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta.conj())
vec1: maybe_multiply(grad.mv(vec2.conj()), alpha.conj())
vec2: maybe_multiply(grad.t().mv(vec1.conj()), alpha.conj())
result: maybe_multiply(self_t, beta) + maybe_multiply(vec1_t.outer(vec2_p), alpha) + maybe_multiply(vec1_p.outer(vec2_t), alpha)
- name: affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor
theta: affine_grid_generator_backward_symint(grad, size, align_corners)
- name: alias(Tensor(a) self) -> Tensor(a)
self: grad
result: self_t
- name: angle(Tensor self) -> Tensor
self: angle_backward(grad, self)
result: handle_r_to_c(result.scalar_type(), angle_backward(self_t.conj(), self_p).conj())
# The four items below are necessary because TensorIterator doesn't work on
# Variables (codegen does not unwrap the input Tensor for all() and any() ).
- name: any(Tensor self) -> Tensor
output_differentiability: [False]
- name: any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
output_differentiability: [False]
- name: any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
output_differentiability: [False]
- name: _is_all_true(Tensor self) -> Tensor
self: non_differentiable
- name: _is_any_true(Tensor self) -> Tensor
self: non_differentiable
- name: all(Tensor self) -> Tensor
output_differentiability: [False]
- name: all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor
output_differentiability: [False]
- name: all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor
output_differentiability: [False]
- name: acosh(Tensor self) -> Tensor
# Save one rsqrt in the real case by using that for x real and positive sqrt(x*y) = sqrt(x)*sqrt(y) (not true in the complex case)
self: "self.is_complex() ? grad * ((self + 1).rsqrt() * (self - 1).rsqrt()).conj() : grad * (self * self - 1).rsqrt()"
result: auto_element_wise
- name: acosh_(Tensor(a!) self) -> Tensor(a!)
self: not_implemented("inplace version of acosh")
- name: asinh(Tensor self) -> Tensor
self: grad * (self.pow(2) + 1).rsqrt().conj()
result: auto_element_wise
- name: asinh_(Tensor(a!) self) -> Tensor(a!)
self: not_implemented("inplace version of asinh")
- name: atanh(Tensor self) -> Tensor
self: grad * 1 / (1 - self.pow(2)).conj()
result: auto_element_wise
- name: atanh_(Tensor(a!) self) -> Tensor(a!)
self: not_implemented("inplace version of atanh")
- name: as_strided(Tensor(a) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a)
self: as_strided_backward(grad, TensorGeometry(self), size, stride, storage_offset)
result: auto_linear
- name: as_strided_(Tensor(a!) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a!)
self: as_strided_backward(grad, TensorGeometry(self), size, stride, storage_offset)
result: auto_linear
- name: asin(Tensor self) -> Tensor
self: grad * (-self * self + 1).rsqrt().conj()
result: auto_element_wise
- name: atan(Tensor self) -> Tensor
self: grad / (self * self + 1).conj()
result: auto_element_wise
- name: atan2(Tensor self, Tensor other) -> Tensor
self, other: atan2_backward(grad, self, other, grad_input_mask)
result: (-self_p * other_t + other_p * self_t) / (self_p.pow(2) + other_p.pow(2))
- name: baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
self: maybe_multiply(grad, beta.conj())
batch1: maybe_multiply(grad.bmm(batch2.transpose(1, 2).conj()), alpha.conj())
batch2: maybe_multiply(batch1.transpose(1, 2).conj().bmm(grad), alpha.conj())
result: maybe_multiply(self_t, beta) + maybe_multiply(batch1_t.bmm(batch2_p), alpha) + maybe_multiply(batch1_p.bmm(batch2_t), alpha)
- name: bernoulli(Tensor self, *, Generator? generator=None) -> Tensor
self: zeros_like(grad)
result: auto_element_wise
- name: bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!)
self: zeros_like(grad)
p: zeros_like(p)
result: self_t.zero_()
- name: bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!)
self: zeros_like(grad)
result: self_t.zero_()
- name: bmm(Tensor self, Tensor mat2) -> Tensor
self: grad.bmm(mat2.transpose(1, 2).conj())
mat2: self.transpose(1, 2).conj().bmm(grad)
result: self_t.bmm(mat2_p) + self_p.bmm(mat2_t)
- name: matmul(Tensor self, Tensor other) -> Tensor
self, other: matmul_backward(grad, self, other, grad_input_mask)
- name: cat(Tensor[] tensors, int dim=0) -> Tensor
tensors: cat_tensors_backward(grad, to_args_sizes_symint(tensors), to_args_scalartypes(tensors), dim)
result: cat_jvp(tensors, dim)
- name: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
self: zeros_like(grad)
result: self_t.zero_()
- name: ceil(Tensor self) -> Tensor
self: zeros_like(grad)
result: auto_element_wise
- name: cholesky(Tensor self, bool upper=False) -> Tensor
self: cholesky_backward(grad, upper, result)
- name: linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)
self: cholesky_backward(grad, upper, L)
L: cholesky_jvp(self_t, L, upper)
- name: cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> Tensor
self, input2: cholesky_solve_backward(grad, self, input2, result, upper, grad_input_mask)
result: cholesky_solve_jvp(result, input2_p, input2_t, self_t, upper)
- name: cholesky_inverse(Tensor self, bool upper=False) -> Tensor
self: cholesky_inverse_backward(grad, self, upper, result)
result: cholesky_inverse_jvp(self_p, self_t, result, upper)
# For clamp, gradient is not defined at the boundaries. But empirically it's helpful
# to be able to get gradient on min and max, so we return the subgradient 1 for these cases.
- name: clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor
self: clamp_backward(grad, self, min, max)
min, max: clamp_backward_min_max(grad, self, min, max, grad_input_mask)
result: clamp_jvp(self_p, self_t, min_p, min_t, max_p, max_t)
- name: clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor
self: clamp_backward(grad, self, min, max)
result: auto_element_wise
- name: clamp_min(Tensor self, Scalar min) -> Tensor
self: where(self >= min, grad, at::scalar_tensor(0., grad.options()))
result: auto_element_wise
- name: clamp_min.Tensor(Tensor self, Tensor min) -> Tensor
self: where(self >= min, grad, at::scalar_tensor(0., grad.options()))
min: where(self < min, grad, at::scalar_tensor(0., grad.options()))
result: where(self_p >= min_p, self_t, min_t)
- name: clamp_max(Tensor self, Scalar max) -> Tensor
self: where(self <= max, grad, at::scalar_tensor(0., grad.options()))
result: auto_element_wise
- name: clamp_max.Tensor(Tensor self, Tensor max) -> Tensor
self: where(self <= max, grad, at::scalar_tensor(0., grad.options()))
max: where(self > max, grad, at::scalar_tensor(0., grad.options()))
result: where(self_p <= max_p, self_t, max_t)
- name: clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
self: grad
result: auto_linear
- name: _lazy_clone(Tensor self) -> Tensor
self: grad
result: auto_linear
- name: _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
self: _to_copy_backward(grad, self.options())
result: _to_copy(self_t, dtype, layout, device, pin_memory, non_blocking, memory_format)
# The condition is: if dtype is not nullopt, then isDifferentiableType(*dtype)
# (If dtype IS nullopt, we rely on the regular check that any input requires grad).
output_differentiability: ["!dtype || isDifferentiableType(*dtype)"]
- name: _coalesce(Tensor self) -> Tensor
self: grad
- name: complex(Tensor real, Tensor imag) -> Tensor
real: at::real(grad)
imag: at::imag(grad)
result: at::complex(real_t, imag_t)
- name: polar(Tensor abs, Tensor angle) -> Tensor
abs, angle: polar_backward(grad, result)
result: at::complex(abs_t*angle_p.cos() - angle_t*abs_p*angle_p.sin(), abs_t*angle_p.sin() + angle_t*abs_p*angle_p.cos())
- name: _conj(Tensor(a) self) -> Tensor(a)
self: grad.conj()
result: self_t.conj()
- name: _neg_view(Tensor(a) self) -> Tensor(a)
self: grad.neg()
result: self_t._neg_view()
- name: _conj_physical(Tensor self) -> Tensor
self: grad.conj_physical()
result: self_t.conj_physical()
- name: conj_physical_(Tensor(a!) self) -> Tensor(a!)
self: grad.conj_physical()
result: self_t.conj_physical_()
- name: copysign.Tensor(Tensor self, Tensor other) -> Tensor
self: copysign_tensor_self_backward(grad, self, result)
other: zeros_like(other)
result: copysign_tensor_self_backward(self_t, self_p, result)
- name: copysign.Scalar(Tensor self, Scalar other) -> Tensor
self: copysign_tensor_self_backward(grad, self, result)
result: auto_element_wise
- name: cos(Tensor self) -> Tensor
self: grad * -self.sin().conj()
result: auto_element_wise
- name: cosh(Tensor self) -> Tensor
self: grad * self.sinh().conj()
result: auto_element_wise
- name: count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor
output_differentiability: [False]
- name: count_nonzero(Tensor self, int? dim=None) -> Tensor
output_differentiability: [False]
- name: linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> Tensor
self: at::linalg_cross(other.conj(), grad, dim)
other: at::linalg_cross(grad, self.conj(), dim)
result: "at::linalg_cross(self_t, other_p, dim) + at::linalg_cross(self_p, other_t, dim)"
- name: logcumsumexp(Tensor self, int dim) -> Tensor
self: logcumsumexp_backward(grad, self, result, dim)
result: logcumsumexp_jvp(self_p, self_t, dim)
- name: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
self: cumprod_backward(grad.to(self.scalar_type()), self, dim, result)
result: "cumprod_jvp(self_t, self_p, result, dim).to(dtype.has_value() ? *dtype : self_p.scalar_type())"
- name: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
self: cumsum_backward(grad.to(self.scalar_type()), dim)
result: auto_linear
- name: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)
self: cummaxmin_backward(grad, self, indices, dim)
values: self_t.gather(dim, indices)
- name: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
self: cummaxmin_backward(grad, self, indices, dim)
values: self_t.gather(dim, indices)
- name: conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor
self, weight, bias: "grad.defined() ? conv_tbc_backward(grad, self, weight, bias, pad) : std::tuple<Tensor, Tensor, Tensor>()"
- name: _ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
log_probs: _ctc_loss_backward(grad, log_probs, targets, input_lengths, target_lengths, result0, result1, blank, zero_infinity)
- name: _ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)
log_probs: _ctc_loss_backward(grad, log_probs, targets, input_lengths, target_lengths, result0, result1, blank, zero_infinity)
- name: deg2rad(Tensor self) -> Tensor
self: deg2rad_backward(grad)
result: auto_element_wise
- name: _linalg_det(Tensor A) -> (Tensor result, Tensor LU, Tensor pivots)
A: linalg_det_backward(grad, result, A, LU, pivots)
result: linalg_det_jvp(A_t, result, LU, pivots, A_p.is_contiguous() && !A_p.is_complex())
output_differentiability: [True, False, False]
- name: _linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet, Tensor LU, Tensor pivots)
A: slogdet_backward(grad_sign, grad_logabsdet, A, sign, LU, pivots)
sign, logabsdet: slogdet_jvp(LU, pivots, A_t, sign, A_p.is_contiguous() && !A_p.is_complex())
output_differentiability: [True, True, False, False]
- name: block_diag(Tensor[] tensors) -> Tensor
tensors: block_diag_backward(grad, to_args_sizes(tensors), to_args_scalartypes(tensors))
result: block_diag_jvp(tensors)
- name: diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> Tensor
self: grad.diagonal(offset, dim1, dim2)
result: auto_linear
- name: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
self: diagonal_backward_symint(grad, self.sym_sizes(), offset, dim1, dim2)
result: auto_linear
- name: diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor
grad_output: grad.diagonal(offset, dim1, dim2)
result: auto_linear
- name: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor
self: norm_backward(grad, self - other, p, result)
other: -norm_backward(grad, self - other, p, result)
result: norm_jvp(self_p - other_p, self_t - other_t, p, result, {}, false)
# The backward formula is done in this order to improve numerical stability
# of the higher order derivatives, see https://github.com/pytorch/pytorch/issues/43414
# Note that we don't use "result" because saving it would be BC-breaking when it is used in an inplace operation later
- name: div.Tensor(Tensor self, Tensor other) -> Tensor
self: div_tensor_self_backward(grad, other, self.scalar_type())
other: div_tensor_other_backward(grad, self, other)
result: (self_t - other_t * result) / other_p
- name: div.Scalar(Tensor self, Scalar other) -> Tensor
self: div_tensor_self_backward(grad, other, self.scalar_type())
result: self_t / other
- name: div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor
self: div_tensor_self_backward(grad, other, self.scalar_type(), rounding_mode)
other: div_tensor_other_backward(grad, self, other, rounding_mode)
result: "rounding_mode.has_value() ? result.new_zeros_symint(result.sym_sizes()) : self_t / other_p - other_t * (self_p / other_p) / other_p"
- name: div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor
self: div_tensor_self_backward(grad, other, self.scalar_type(), rounding_mode)
result: "rounding_mode.has_value() ? result.new_zeros_symint(result.sym_sizes()) : self_t / other"
- name: dot(Tensor self, Tensor tensor) -> Tensor
self: grad * tensor.conj()
tensor: grad * self.conj()
result: at::dot(self_t, tensor_p) + at::dot(self_p, tensor_t)
- name: vdot(Tensor self, Tensor other) -> Tensor
self: grad.conj() * other
other: grad * self
result: at::vdot(self_t, other_p) + at::vdot(self_p, other_t)
- name: _fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)
self: _fused_dropout_backward(grad, result1, p)
- name: native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)
input: "GradMode::is_enabled() ? infinitely_differentiable_native_dropout_backward(grad, result1, (!train.has_value() || !train.value() ? 1 : (p == 1 ? 0.0 : 1.0 / (1.0 - p)))) : native_dropout_backward(grad, result1, (!train.has_value() || !train.value() ? 1 : (p == 1 ? 0.0 : 1.0 / (1.0 - p))))"
result0: "(!train.has_value() || train.value()) ? (p == 1 ? 0.0 : 1.0 / (1.0 - p)) * input_t * result1 : input_t"
- name: native_dropout_backward(Tensor grad_output, Tensor mask, float scale) -> Tensor
grad_output: "native_dropout_double_backward(grad, grad_output, mask, scale)"
mask: 'not_implemented("native_dropout_backward: mask")'
- name: eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
self: zeros_like(self)
result: self_t.zero_()
- name: eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
self: zeros_like(self)
other: zeros_like(other)
result: self_t.zero_()
- name: erf(Tensor self) -> Tensor
self: 2.0 / sqrt(M_PI) * exp(-(self.pow(2))) * grad
result: auto_element_wise
- name: erfc(Tensor self) -> Tensor
self: -2.0 / sqrt(M_PI) * exp(-(self.pow(2))) * grad
result: auto_element_wise
- name: special_erfcx(Tensor self) -> Tensor
self: (2.0 * self * result - 2.0 / sqrt(M_PI)) * grad
result: auto_element_wise
- name: erfinv(Tensor self) -> Tensor
self: 0.5 * sqrt(M_PI) * exp(self.erfinv().pow(2)) * grad
result: auto_element_wise
- name: exp(Tensor self) -> Tensor
self: grad * result.conj()
result: auto_element_wise
- name: exp2(Tensor self) -> Tensor
self: grad * result.conj() * M_LN2
result: auto_element_wise
- name: expm1(Tensor self) -> Tensor
self: grad * (result.conj() + 1)
result: auto_element_wise
# TODO: this derivative is not SymInt safe, need sum_to support
- name: expand(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> Tensor(a)
self: at::sum_to(grad, self.sym_sizes())
result: auto_linear
- name: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
self: zeros_like(grad)
result: self_t.zero_()
- name: fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask)
self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask)
- name: _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask)
self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask)
- name: _fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor
self, scale, zero_point: "grad.defined() ? _fake_quantize_learnable_per_tensor_affine_backward(grad, self, scale, zero_point, quant_min, quant_max, grad_factor) : std::tuple<Tensor, Tensor, Tensor>()"
- name: fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask)
self: fake_quantize_per_channel_affine_cachemask_backward(grad, mask)
- name: _fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor
self, scale, zero_point: "grad.defined() ? _fake_quantize_learnable_per_channel_affine_backward(grad, self, scale, zero_point, axis, quant_min, quant_max, grad_factor) : std::tuple<Tensor, Tensor, Tensor>()"
- name: _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask)
self: fake_quantize_per_tensor_affine_cachemask_backward(grad, mask)
- name: fill.Scalar(Tensor self, Scalar value) -> Tensor
self: zeros_like(grad)
result: at::fill(self_t, 0)
- name: fill.Tensor(Tensor self, Tensor value) -> Tensor
self: zeros_like(grad)
value: grad.sum()
result: at::fill(self_t, value_t)
- name: fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)
self: zeros_like(grad)
result: self_t.fill_(0)
- name: fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)
self: zeros_like(grad)
value: grad.sum()
result: self_t.fill_(value_t)
- name: floor(Tensor self) -> Tensor
self: zeros_like(grad)
result: auto_element_wise
- name: fmod.Scalar(Tensor self, Scalar other) -> Tensor
self: grad
result: auto_element_wise
- name: fmod.Tensor(Tensor self, Tensor other) -> Tensor
self: grad
other: -grad * self.div(other, /*rounding_mode=*/"trunc")
result: self_t - other_t * self_p.div(other_p, /*rounding_mode=*/"trunc")
- name: frac(Tensor self) -> Tensor
self: grad
result: self_t
- name: frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)
self: grad / exponent.exp2()
mantissa: self_t / exponent.exp2()
- name: gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor
self: gather_backward(grad, self, dim, index, sparse_grad)
index: non_differentiable
result: auto_linear
- name: ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
self: zeros_like(self)
result: self_t.zero_()
- name: ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
self: zeros_like(self)
other: zeros_like(other)
result: self_t.zero_()
- name: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
self: zeros_like(grad)
result: self_t.zero_()
- name: geqrf(Tensor self) -> (Tensor a, Tensor tau)
self: not_implemented("geqrf")
- name: indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: _indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: crow_indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: col_indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: ccol_indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: row_indices(Tensor(a) self) -> Tensor(a)
output_differentiability: [False]
- name: grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor
input, grid: "grad.defined() ? grid_sampler_2d_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners, grad_input_mask) : std::tuple<Tensor, Tensor>()"
- name: grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor
input, grid: "grad.defined() ? grid_sampler_3d_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners, grad_input_mask) : std::tuple<Tensor, Tensor>()"
# See NOTE [ grid_sample CPU fallback ]
- name: _grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor
input, grid: "grad.defined() ? _grid_sampler_2d_cpu_fallback_backward(grad, input, grid, interpolation_mode, padding_mode, align_corners) : std::tuple<Tensor, Tensor>()"
- name: gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
self: zeros_like(self)
result: self_t.zero_()
- name: gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
self: zeros_like(self)
other: zeros_like(other)
result: self_t.zero_()
- name: hardsigmoid(Tensor self) -> Tensor
self: hardsigmoid_backward(grad, self)
result: auto_element_wise
- name: histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor
output_differentiability: [False]
- name: hardswish(Tensor self) -> Tensor
self: hardswish_backward(grad, self)
result: auto_element_wise
- name: hardswish_backward(Tensor grad_output, Tensor self) -> Tensor
grad_output: hardswish_backward(grad, self)
self: at::where(at::logical_and(-3.0 < self, self < 3.0), grad * grad_output / 3.0, at::zeros({}, self.options()))
result: "hardswish_backward(grad_output_t, self_p)
+ at::where(at::logical_and(-3.0 < self_p, self_p < 3.0), self_t * grad_output_p / 3.0, at::zeros({}, self_p.options()))"
- name: hypot(Tensor self, Tensor other) -> Tensor
self: grad * self / result
other: grad * other / result
result: self_t * self_p / result + other_t * other_p / result
- name: i0(Tensor self) -> Tensor
self: grad * at::special_i1(self)
result: auto_element_wise
- name: special_i0e(Tensor self) -> Tensor
self: grad * (at::special_i1e(self) - self.sgn() * result)
result: auto_element_wise
- name: special_i1(Tensor self) -> Tensor
self: i1_backward(grad, self, result)
result: auto_element_wise
- name: special_i1e(Tensor self) -> Tensor
self: i1e_backward(grad, self, result)
result: auto_element_wise
- name: igamma(Tensor self, Tensor other) -> Tensor
self: 'not_implemented("igamma: input")'
other: grad * exp((self - 1) * log(other) - other - lgamma(self))
- name: igammac(Tensor self, Tensor other) -> Tensor
self: 'not_implemented("igammac: input")'
other: -grad * exp((self - 1) * log(other) - other - lgamma(self))
- name: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
self: index_backward(grad.new_zeros_symint(self.sym_sizes(), self.options()), indices, grad)
result: auto_linear
- name: _unsafe_index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
self: at::_unsafe_index_put(grad.new_zeros_symint(self.sym_sizes(), self.options()), indices, grad, true)
result: auto_linear
- name: index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor
self: grad
# The case source.dim() == 0 is necessary to support scalar tensors of the form
# source.dim() == 0 and index.dim() == 1 and index.size() == (1,),
# This is because source is not broadcastable to index, as source.dim() < index.dim()
source: "maybe_multiply(source.dim() > 0 ? grad.index_select(dim, index).expand_as(source) : grad.index_select(dim, index.squeeze(0)), alpha)"
index: non_differentiable
result: at::index_add(self_t, dim, index, maybe_multiply(source_t, alpha))
- name: index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor
self, source: index_reduce_backward(grad, self, dim, index, source, reduce, include_self, result)
index: non_differentiable
- name: index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
self: grad.index_fill(dim, index, 0)
# The case source.dim() == 0 is necessary to support scalar tensors of the form
# source.dim() == 0 and index.dim() == 1 and index.size() == (1,),
# This is because source is not broadcastable to index, as source.dim() < index.dim()
source: "source.dim() > 0 ? grad.index_select(dim, index).expand_as(source) : grad.index_select(dim, index.squeeze(0))"
index: non_differentiable
result: self_t.index_copy(dim, index, source_t)
- name: index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
self: grad.index_fill(dim, index, 0)
index: non_differentiable
result: self_t.index_fill(dim, index, 0)
- name: index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor
self: grad.index_fill(dim, index, 0)
value: grad.index_select(dim, std::get<0>(at::_unique(index, /*sorted=*/false))).sum()
index: non_differentiable
result: self_t.index_fill(dim, index, value_t)
- name: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor
self: "accumulate ? grad : grad.index_put(indices, zeros_like(values), false)"
values: grad.index(indices)
result: self_t.index_put(indices, values_t, accumulate)
- name: _unsafe_index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor
self: "accumulate ? grad : at::_unsafe_index_put(grad, indices, zeros_like(values), false)"
values: at::_unsafe_index(grad, indices)
result: at::_unsafe_index_put(self_t, indices, values_t, accumulate)
- name: _index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!)
self: "accumulate ? grad : grad.index_put(indices, zeros_like(values), false)"
values: grad.index(indices)
result: at::_index_put_impl_(self_t, indices, values_t, accumulate, unsafe)
- name: index_select(Tensor self, int dim, Tensor index) -> Tensor
self: index_select_backward_symint(grad, self.sym_sizes(), dim, index)
index: non_differentiable
result: auto_linear
- name: linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info)
A: -at::matmul(inverse.mH(), at::matmul(grad, inverse.mH()))
inverse: -at::matmul(at::matmul(inverse, A_t), inverse)
output_differentiability: [True, False]
- name: linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor
self: pinv_backward(grad, result, self)
result: pinv_jvp(self_p, result, self_t)
- name: isnan(Tensor self) -> Tensor
self: non_differentiable
- name: kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)
self: value_selecting_reduction_backward_symint(grad, dim, indices, self.sym_sizes(), keepdim)
values: gather_with_keepdimed_indices(self_t, dim, indices, keepdim)
- name: le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
self: zeros_like(self)
result: self_t.zero_()
- name: le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
self: zeros_like(self)
other: zeros_like(other)
result: self_t.zero_()
- name: lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor
self: "weight.isComplex() ? grad * (1 - weight.conj().toComplexDouble()) : grad * (1 - weight.toDouble())"
end: grad * weight.conj()
result: at::lerp(self_t, end_t, weight)
- name: lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor
self: grad * (1 - weight).conj()
end: grad * weight.conj()
weight: grad * (end - self).conj()
result: at::lerp(self_t, end_t, weight_p) + weight_t * (end_p - self_p)
- name: lgamma(Tensor self) -> Tensor
self: grad * digamma(self)
result: auto_element_wise
- name: digamma(Tensor self) -> Tensor
self: grad * polygamma(1, self)
result: auto_element_wise
- name: polygamma(int n, Tensor self) -> Tensor
self: grad * polygamma(n + 1, self)
result: auto_element_wise
- name: polygamma_(Tensor(a!) self, int n) -> Tensor(a!)
self: grad * polygamma(n + 1, self)
result: self_t.mul_(polygamma(n + 1, original_self_p))
- name: log(Tensor self) -> Tensor
self: grad.div(self.conj())
result: auto_element_wise
- name: log10(Tensor self) -> Tensor
self: grad / (self.conj() * 2.3025850929940456)
result: auto_element_wise
- name: log1p(Tensor self) -> Tensor
self: log1p_backward(grad, self)
result: auto_element_wise
- name: log2(Tensor self) -> Tensor
self: grad / (self.conj() * 0.6931471805599453)
result: auto_element_wise
- name: logaddexp(Tensor self, Tensor other) -> Tensor
self: grad / (1 + exp(other - self)).conj()
other: grad / (1 + exp(self - other)).conj()
result: self_t / (1 + exp(other_p - self_p)) + other_t / (1 + exp(self_p - other_p))
- name: logaddexp2(Tensor self, Tensor other) -> Tensor
self: grad / (1 + pow(2, other - self))
other: grad / (1 + pow(2, self - other))
result: self_t / (1 + pow(2, other_p - self_p)) + other_t / (1 + pow(2, self_p - other_p))
# Note [Gradient formula for xlogy at x = 0, y <= 0]
# x * log(y) is not defined at y <= 0, so we cannot even talk about differentiability
# Now, xlogy(0, y) = 0 by definition.
# This does not make it differentiable as it's not defined in a neighbourhood of a point
# (0, y) when y <= 0.
# Now, when a function is non-differentiable, sometimes we return "a relatively sensible value"
# In this case, as per the discussion in https://github.com/pytorch/pytorch/issues/80770, we choose
# this value to be zero, which is the directional derivative along the line {x = 0}.
- name: xlogy.Tensor(Tensor self, Tensor other) -> Tensor
self: at::xlogy(grad, other).masked_fill((self == 0.) & (other <= 0.), 0.)
other: grad * self / other
result: at::xlogy(self_t, other_p).masked_fill((self_p == 0.) & (other_p <= 0.), 0.) + other_t * self_p / other_p
- name: xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor
other: grad * self / other
result: auto_element_wise
- name: xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor
self: "other.toDouble() > 0.
? at::xlogy(grad, other)
: at::xlogy(grad, other).masked_fill(self == 0., 0.)"
result: auto_element_wise
# See Note [Gradient formula for xlogy at x = 0, y <= 0]
# Same here but with y <= -1
- name: special_xlog1py(Tensor self, Tensor other) -> Tensor
self: at::special_xlog1py(grad, other).masked_fill((self == 0.) & (other <= -1.), 0.)
other: grad * self / (other + 1)
result: at::special_xlog1py(self_t, other_p).masked_fill((self_p == 0.) & (other_p <= -1.), 0.) + other_t * self_p / (other_p + 1)
- name: special_xlog1py.self_scalar(Scalar self, Tensor other) -> Tensor
other: grad * self / (other + 1)
result: auto_element_wise
- name: special_xlog1py.other_scalar(Tensor self, Scalar other) -> Tensor
self: "other.toDouble() > -1.
? at::special_xlog1py(grad, other)