forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_python_functions.py
1396 lines (1213 loc) · 45.2 KB
/
gen_python_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._sparse
# or torch._C._special objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
import itertools
import re
from collections import defaultdict
from typing import Callable, Dict, Iterable, List, Optional, Sequence, Set, Tuple
import yaml
from torchgen.api import cpp
from torchgen.api.python import (
arg_parser_output_exprs,
cpp_dispatch_exprs,
cpp_dispatch_target,
dispatch_lambda_args,
dispatch_lambda_exprs,
dispatch_lambda_return_str,
has_tensor_options,
PythonSignature,
PythonSignatureDeprecated,
PythonSignatureGroup,
PythonSignatureNativeFunctionPair,
signature,
signature_from_schema,
structseq_fieldnames,
)
from torchgen.code_template import CodeTemplate
from torchgen.context import with_native_function
from torchgen.gen import cpp_string, parse_native_yaml, parse_tags_yaml
from torchgen.model import (
Argument,
BaseOperatorName,
FunctionSchema,
NativeFunction,
SchemaKind,
Type,
Variant,
)
from torchgen.utils import FileManager, split_name_params
from torchgen.yaml_utils import YamlLoader
from .gen_inplace_or_view_type import is_tensor_list_type
from .gen_trace_type import should_trace
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
_SKIP_PYTHON_BINDINGS = [
"alias",
"contiguous",
"is_cuda",
"is_sparse",
"is_sparse_csr",
"size",
"stride",
"sym_size",
"sym_stride",
"sym_storage_offset",
"sym_numel",
".*_backward",
".*_backward_(out|input|weight|bias)",
".*_forward",
".*_forward_out",
".*_jvp",
"_unsafe_view",
"tensor",
"_?sparse_(coo|compressed|csr|csc|bsr|bsc)_tensor.*",
"_range.*",
"_sparse_add_out",
"_sparse_div.*",
"_sparse_mul.*",
"_sparse_sub.*",
"_sparse_dense_add_out",
"index",
"index_out",
"unique_dim_consecutive",
"_cumsum.*",
"_cumprod.*",
"_sum.*",
"_prod.*",
"_th_.*",
"_thnn_.*",
"range.*",
"_solve.*",
"_inverse.*",
"_cholesky.*",
"_triangular_solve.*",
"_qr.*",
"_svd.*",
"slice",
"item",
"_local_scalar_dense",
"to",
"_to_copy",
"_to_copy_out",
"_reshape_copy",
"_reshape_copy_out",
"copy_sparse_to_sparse_",
"copy_",
"numpy_T",
"matrix_H",
"mT",
"mH", # these need to be an attributes in Python, not functions
"nonzero(_(out|numpy))?",
"set_data",
".*_overrideable", # overrideable functions for backend extension
"data",
"is_leaf",
"output_nr",
"_version",
"requires_grad_",
"retains_grad",
"set_",
"_fw_primal",
"fake_quantize_per_tensor_affine_cachemask",
"fake_quantize_per_channel_affine_cachemask",
"_new_zeros_with_same_feature_meta",
"_has_same_storage_numel", # used for forward AD internals
"_reshape_alias",
"replace_", # only used by the functionalization pass, doesn't need to be exposed to python
"copy", # only used by the functionalization pass
"fill.Tensor", # only used by the functionalization pass
"fill.Scalar", # only used by the functionalization pass
"lift.*",
"normal_functional", # only used by the functionalization pas
"nbytes",
"itemsize",
]
SKIP_PYTHON_BINDINGS = [
re.compile(rf"^{pattern}$") for pattern in _SKIP_PYTHON_BINDINGS
]
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
"add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
"sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor",
"sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)",
"mul.Scalar(Tensor self, Scalar other) -> Tensor",
"mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
"div.Scalar(Tensor self, Scalar other) -> Tensor",
"div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)",
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
# NativeFunctions that are entirely code-generated should not get python bindings
# because these codegen implementations are often inefficient. A handful of
# view_copy style ops were exposed accidentally when they were handwritten and now
# that we are moving them to codegen for bc reasons we need to keep them exposed in
# python.
if "generated" in f.tags and "view_copy" not in f.tags:
return False
name = cpp.name(f.func)
for skip_regex in SKIP_PYTHON_BINDINGS:
if skip_regex.match(name):
return False
signature = str(f.func)
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == signature:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f"THPVariable_{name}"
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == "nn"
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == "fft"
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == "linalg"
def is_py_nested_function(f: NativeFunction) -> bool:
return f.python_module == "nested"
def is_py_sparse_function(f: NativeFunction) -> bool:
return f.python_module == "sparse"
def is_py_special_function(f: NativeFunction) -> bool:
return f.python_module == "special"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(
out: str,
native_yaml_path: str,
tags_yaml_path: str,
deprecated_yaml_path: str,
template_path: str,
*,
symint: bool = True,
) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
native_functions = parse_native_yaml(
native_yaml_path, tags_yaml_path
).native_functions
native_functions = list(filter(should_generate_py_binding, native_functions))
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
create_python_bindings(
fm,
methods,
is_py_variable_method,
None,
"python_variable_methods.cpp",
method=True,
symint=symint,
)
# NOTE: num_shards here must be synced with gatherTorchFunctions in
# torch/csrc/autograd/python_torch_functions_manual.cpp
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
create_python_bindings_sharded(
fm,
functions,
is_py_torch_function,
"torch",
"python_torch_functions.cpp",
method=False,
num_shards=3,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_nn_function,
"torch.nn",
"python_nn_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_fft_function,
"torch.fft",
"python_fft_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_linalg_function,
"torch.linalg",
"python_linalg_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_nested_function,
"torch.nested",
"python_nested_functions.cpp",
method=False,
)
create_python_bindings(
fm,
functions,
is_py_sparse_function,
"torch.sparse",
"python_sparse_functions.cpp",
method=False,
symint=symint,
)
create_python_bindings(
fm,
functions,
is_py_special_function,
"torch.special",
"python_special_functions.cpp",
method=False,
symint=symint,
)
# Currently, we only use `functions` to generate `return_types` bindings.
# All methods which return structseq have function variant at this point.
# If any method only operator with structseq is added in the future,
# we will have to address that.
create_python_return_type_bindings(
fm, functions, lambda fn: True, "python_return_types.cpp"
)
create_python_return_type_bindings_header(
fm, functions, lambda fn: True, "python_return_types.h"
)
valid_tags = parse_tags_yaml(tags_yaml_path)
def gen_tags_enum() -> Dict[str, str]:
return {
"enum_of_valid_tags": (
"".join(
[f'\n.value("{tag}", at::Tag::{tag})' for tag in sorted(valid_tags)]
)
)
}
fm.write("python_enum_tag.cpp", gen_tags_enum)
def group_filter_overloads(
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
) -> Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]:
grouped: Dict[
BaseOperatorName, List[PythonSignatureNativeFunctionPair]
] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
return grouped
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
symint: bool = True,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
ops_headers: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
py_methods.append(
method_impl(name, module, overloads, method=method, symint=symint)
)
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
ops_headers.append(f"#include <ATen/ops/{name.base}.h>")
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"ops_headers": ops_headers,
"py_forwards": py_forwards,
"py_methods": py_methods,
"py_method_defs": py_method_defs,
},
)
def create_python_return_type_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
filename: str,
) -> None:
"""
Generate function to initialize and return named tuple for native functions
which returns named tuple and registration invocations in `python_return_types.cpp`.
"""
py_return_types_definition: List[str] = []
py_return_types_registrations: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
definitions, registrations = generate_return_type_definition_and_registrations(
overloads
)
py_return_types_definition.append(
"" if not definitions else "\n".join(definitions)
)
py_return_types_registrations.append(
"" if not registrations else "\n".join(registrations)
)
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"py_return_types": py_return_types_definition,
"py_return_types_registrations": py_return_types_registrations,
},
)
def create_python_return_type_bindings_header(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
filename: str,
) -> None:
"""
Generate function to initialize and return named tuple for native functions
which returns named tuple and relevant entry for the map in `python_return_types.cpp`.
"""
py_return_types_declarations: List[str] = []
grouped = group_filter_overloads(pairs, pred)
for name in sorted(grouped.keys(), key=str):
overloads = grouped[name]
declarations = generate_return_type_declarations(overloads)
py_return_types_declarations.append(
"" if not declarations else "\n".join(declarations)
)
fm.write_with_template(
filename,
filename,
lambda: {
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
"py_return_types_declarations": py_return_types_declarations,
},
)
def create_python_bindings_sharded(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
num_shards: int,
symint: bool = True,
) -> None:
"""Generates Python bindings to ATen functions"""
grouped = group_filter_overloads(pairs, pred)
def key_func(
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
) -> str:
return kv[0].base
def env_func(
kv: Tuple[BaseOperatorName, List[PythonSignatureNativeFunctionPair]]
) -> Dict[str, List[str]]:
name, fn_pairs = kv
return {
"ops_headers": [f"#include <ATen/ops/{name.base}.h>"],
"py_forwards": list(forward_decls(name, fn_pairs, method=method)),
"py_methods": [
method_impl(name, module, fn_pairs, method=method, symint=symint)
],
"py_method_defs": [method_def(name, module, fn_pairs, method=method)],
}
fm.write_sharded(
filename,
grouped.items(),
base_env={
"generated_comment": "@"
+ f"generated from {fm.template_dir_for_comments()}/{filename}",
},
key_fn=key_func,
env_callable=env_func,
num_shards=num_shards,
sharded_keys={"ops_headers", "py_forwards", "py_methods", "py_method_defs"},
)
def load_signatures(
native_functions: List[NativeFunction],
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(
pairs, deprecated_yaml_path, method=method, pyi=pyi
)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# group the original ATen signatures by name
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[pair.signature.name].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path) as f:
deprecated_defs = yaml.load(f, Loader=YamlLoader)
for deprecated in deprecated_defs:
schema = FunctionSchema.parse(deprecated["name"])
aten_name, call_args = split_name_params(deprecated["aten"])
is_out = aten_name.endswith("_out")
if is_out:
aten_name = aten_name.replace("_out", "")
# HACK: these are fixed constants used to pass the aten function.
# The type must be known ahead of time
known_constants = {
"1": Type.parse("Scalar"),
}
schema_args_by_name = {a.name: a for a in schema.arguments.flat_all}
for name in call_args:
assert (
name in schema_args_by_name or name in known_constants
), f"deprecation definiton: Unrecognized value {name}"
# Map deprecated signature arguments to their aten signature and test
# if the types and alias annotation match.
def is_schema_compatible(
aten_schema: FunctionSchema,
) -> bool:
arguments: Iterable[Argument]
if is_out:
arguments = itertools.chain(
aten_schema.arguments.out, aten_schema.arguments.flat_non_out
)
else:
arguments = aten_schema.arguments.flat_all
for i, arg in enumerate(arguments):
if i < len(call_args):
arg_name = call_args[i]
if arg_name in known_constants:
schema_type = known_constants[arg_name]
schema_annotation = None
else:
schema_arg = schema_args_by_name[arg_name]
schema_type = schema_arg.type
schema_annotation = schema_arg.annotation
if schema_type != arg.type or schema_annotation != arg.annotation:
return False
else:
if arg.default is None:
return False
return len(schema.returns) == len(aten_schema.returns) and all(
a == b for a, b in zip(schema.returns, aten_schema.returns)
)
any_schema_found = False
for pair in grouped[aten_name]:
if not is_schema_compatible(pair.function.func):
continue
any_schema_found = True
python_sig = signature_from_schema(
schema,
category_override=pair.function.category_override,
method=method,
pyi=pyi,
)
results.append(
PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=python_sig.input_args,
input_kwargs=python_sig.input_kwargs,
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_schema=schema,
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
)
)
assert (
any_schema_found
), f"No native function with name {aten_name} matched signature:\n {str(schema)}"
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_structseq_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = structseq_fieldnames(f.func.returns)
return "_".join([name] + fieldnames)
def emit_structseq_call(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(
f"""\
static PyTypeObject* {typename} = generated::get_{name}_structseq();"""
)
return typedefs, typenames
def generate_return_type_definition_and_registrations(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Tuple[List[str], List[str]]:
"""
Generate block of function in `python_return_types.cpp` to initialize
and return named tuple for a native function which returns named tuple
and registration invocations in same file.
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
definitions: List[str] = [] # function definition to register the typedef
registrations: List[str] = [] # register call for the typedef
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fields = ", ".join(f'{{"{fn}", ""}}' for fn in fieldnames)
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'{name}NamedTuple{"" if not definitions else len(definitions)}'
typenames[tn_key] = typename
definitions.append(
f"""\
PyTypeObject* get_{name}_structseq() {{
static PyStructSequence_Field NamedTuple_fields[] = {{ {fields}, {{nullptr}} }};
static PyTypeObject {typename};
static bool is_initialized = false;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, NamedTuple_fields, {len(fieldnames)} }};
if (!is_initialized) {{
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
is_initialized = true;
}}
return &{typename};
}}
"""
)
registrations.append(
f'addReturnType(return_types_module, "{name}", generated::get_{name}_structseq());'
)
return definitions, registrations
def generate_return_type_declarations(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> List[str]:
"""
Generate block of function declarations in `python_return_types.h` to initialize
and return named tuple for a native function.
"""
typenames: Dict[
str, str
] = {} # map from unique name + field name lists to typedef name
declarations: List[str] = [] # function declaration to register the typedef
for overload in overloads:
fieldnames = structseq_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_structseq_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = (
f'{name}NamedTuple{"" if not declarations else len(declarations)}'
)
typenames[tn_key] = typename
declarations.append(f"PyTypeObject* get_{name}_structseq();")
return declarations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(
r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
"""
)
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate(
"""\
case ${overload_index}: {
${body}
}
"""
)
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate(
"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
"""
)
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate(
"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
"""
)
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool,
symint: bool = True,
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
structseq_inits, structseq_typenames = emit_structseq_call(overloads)
method_header = ["HANDLE_TH_ERRORS"]
method_header += structseq_inits
method_header += (
["const Tensor& self = THPVariable_Unpack(self_);"] if method else []
)
method_footer = ([] if noarg else ["Py_RETURN_NONE;"]) + ["END_HANDLE_TH_ERRORS"]
traceable = "true" if all(should_trace(o.function) for o in overloads) else "false"
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(
overloads, symint=symint
)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str(symint=symint)
signatures.append(f"{cpp_string(str(signature))},")
dispatch_body = emit_dispatch_case(overload, structseq_typenames, symint=symint)
dispatch.append(
PY_VARIABLE_CASE.substitute(
overload_index=overload_index, body=dispatch_body
)
if not is_singleton
else dispatch_body
)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(o.signature.arguments_count() for o in overloads),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ""
self_ = "self_" if method else "nullptr"
namespace = (
{
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
"torch.nested": "THPNestedVariableFunctionsModule",
"torch.sparse": "THPSparseVariableFunctionsModule",
"torch.special": "THPSpecialVariableFunctionsModule",
}[module]
if module
else "THPVariableClass"
)
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate(
"""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
"""
)