-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathparty.hs
1680 lines (1501 loc) · 58.7 KB
/
party.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
-- Modules.
infixr 9 !
infixr 9 .
infixl 7 * , `div` , `mod`
infixl 6 + , -
infixr 5 ++
infixl 4 <*> , <$> , <* , *>
infix 4 == , /= , <=
infixl 3 && , <|>
infixl 2 ||
infixl 1 >> , >>=
infixr 0 $
foreign import ccall "putchar_shim" putChar :: Char -> IO ()
foreign import ccall "getchar_shim" getChar :: IO Char
foreign import ccall "eof_shim" isEOFInt :: IO Int
foreign import ccall "getargcount" getArgCount :: IO Int
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char
libc = [r|#include<stdio.h>
static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
static int nextCh, isAhead;
int eof_shim() {
if (!isAhead) {
isAhead = 1;
nextCh = getchar();
}
return nextCh == -1;
}
void exit(int);
void putchar_shim(int c) { putchar(c); }
int getchar_shim() {
if (!isAhead) nextCh = getchar();
if (nextCh == -1) exit(1);
isAhead = 0;
return nextCh;
}
void errchar(int c) { fputc(c, stderr); }
void errexit() { fputc('\n', stderr); }
|]
class Functor f where fmap :: (a -> b) -> f a -> f b
class Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b
class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
(<$>) = fmap
liftA2 f x y = f <$> x <*> y
(>>) f g = f >>= \_ -> g
class Eq a where (==) :: a -> a -> Bool
instance Eq Int where (==) = intEq
instance Eq Char where (==) = charEq
($) f x = f x
id x = x
const x y = x
flip f x y = f y x
(&) x f = f x
class Ord a where
(<=) :: a -> a -> Bool
x <= y = case compare x y of
LT -> True
EQ -> True
GT -> False
compare :: a -> a -> Ordering
compare x y = if x <= y then if y <= x then EQ else LT else GT
instance Ord Int where (<=) = intLE
instance Ord Char where (<=) = charLE
data Ordering = LT | GT | EQ
instance Ord a => Ord [a] where
xs <= ys = case xs of
[] -> True
x:xt -> case ys of
[] -> False
y:yt -> if x <= y then if y <= x then xt <= yt else True else False
compare xs ys = case xs of
[] -> case ys of
[] -> EQ
_ -> LT
x:xt -> case ys of
[] -> GT
y:yt -> if x <= y then if y <= x then compare xt yt else LT else GT
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
fst (x, y) = x
snd (x, y) = y
uncurry f (x, y) = f x y
first f (x, y) = (f x, y)
second f (x, y) = (x, f y)
not a = if a then False else True
x /= y = not $ x == y
(.) f g x = f (g x)
(||) f g = if f then True else g
(&&) f g = if f then g else False
instance Eq a => Eq [a] where
xs == ys = case xs of
[] -> case ys of
[] -> True
_ -> False
x:xt -> case ys of
[] -> False
y:yt -> x == y && xt == yt
take 0 xs = []
take _ [] = []
take n (h:t) = h : take (n - 1) t
maybe n j m = case m of Nothing -> n; Just x -> j x
instance Functor Maybe where fmap f = maybe Nothing (Just . f)
instance Applicative Maybe where pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf
instance Monad Maybe where return = Just ; mf >>= mg = maybe Nothing mg mf
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
foldr c n = \case [] -> n; h:t -> c h $ foldr c n t
length = foldr (\_ n -> n + 1) 0
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure [])
mapM_ f = foldr ((>>) . f) (pure ())
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0
instance Applicative IO where pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y)
instance Monad IO where return = ioPure ; (>>=) = ioBind
instance Functor IO where fmap f x = ioPure f <*> x
class Show a where
showsPrec :: Int -> a -> String -> String
showsPrec _ x = (show x++)
show :: a -> String
show x = shows x ""
showList :: [a] -> String -> String
showList = showList__ shows
shows = showsPrec 0
showList__ _ [] s = "[]" ++ s
showList__ showx (x:xs) s = '[' : showx x (showl xs)
where
showl [] = ']' : s
showl (y:ys) = ',' : showx y (showl ys)
showInt__ n
| 0 == n = id
| True = showInt__ (n`div`10) . (chr (48+n`mod`10):)
instance Show () where show () = "()"
instance Show Bool where
show True = "True"
show False = "False"
instance Show a => Show [a] where showsPrec _ = showList
instance Show Int where
showsPrec _ n
| 0 == n = ('0':)
| 1 <= n = showInt__ n
| 2 * n == 0 = ("-2147483648"++)
| True = ('-':) . showInt__ (0 - n)
showLitChar__ '\n' = ("\\n"++)
showLitChar__ '\\' = ("\\\\"++)
showLitChar__ c = (c:)
instance Show Char where
showsPrec _ '\'' = ("'\\''"++)
showsPrec _ c = ('\'':) . showLitChar__ c . ('\'':)
showList s = ('"':) . foldr (.) id (map go s) . ('"':) where
go '"' = ("\\\""++)
go c = showLitChar__ c
instance (Show a, Show b) => Show (a, b) where
showsPrec _ (a, b) = showParen True $ shows a . (',':) . shows b
isEOF = (0 /=) <$> isEOFInt
putStr = mapM_ putChar
putStrLn = (>> putChar '\n') . putStr
print = putStrLn . show
getContents = isEOF >>= \b -> if b then pure [] else getChar >>= \c -> (c:) <$> getContents
interact f = getContents >>= putStr . f
getArgs = getArgCount >>= \n -> mapM (go 0) [1..n-1] where
go k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> go (k + 1) n
error s = unsafePerformIO $ putStr s >> putChar '\n' >> exitSuccess
undefined = error "undefined"
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a
foldl1 f (h:t) = foldl f h t
elem k xs = foldr (\x t -> x == k || t) False xs
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
(++) = flip (foldr (:))
concat = foldr (++) []
map = flip (foldr . ((:) .)) []
head (h:_) = h
tail (_:t) = t
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160]
instance Functor [] where fmap = map
instance Applicative [] where pure = (:[]); f <*> x = concatMap (<$> x) f
instance Monad [] where return = (:[]); (>>=) = flip concatMap
concatMap = (concat .) . map
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing
filter f = foldr (\x xs -> if f x then x:xs else xs) []
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
last (x:xt) = go x xt where go x xt = case xt of [] -> x; y:yt -> go y yt
init (x:xt) = case xt of [] -> []; _ -> x : init xt
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
all f = foldr (&&) True . map f
any f = foldr (||) False . map f
and = foldr (&&) True
or = foldr (||) False
zipWith f xs ys = case xs of [] -> []; x:xt -> case ys of [] -> []; y:yt -> f x y : zipWith f xt yt
zip = zipWith (,)
data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
pure a = State (a,)
(State f) <*> (State x) = State \s -> case f s of (g, s') -> first g $ x s'
instance Monad (State s) where
return a = State (a,)
(State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)
either l r e = case e of Left x -> l x; Right x -> r x
instance Functor (Either a) where fmap f e = either Left (Right . f) e
instance Applicative (Either a) where
pure = Right
ef <*> ex = case ef of
Left s -> Left s
Right f -> either Left (Right . f) ex
instance Monad (Either a) where
return = Right
ex >>= f = either Left f ex
class Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
asum = foldr (<|>) empty
(*>) = liftA2 \x y -> y
(<*) = liftA2 \x y -> x
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)
-- Map.
data Map k a = Tip | Bin Int k a (Map k a) (Map k a)
instance Functor (Map k) where
fmap f m = case m of
Tip -> Tip
Bin sz k x l r -> Bin sz k (f x) (fmap f l) (fmap f r)
size m = case m of Tip -> 0 ; Bin sz _ _ _ _ -> sz
node k x l r = Bin (1 + size l + size r) k x l r
singleton k x = Bin 1 k x Tip Tip
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
node rlk rlkx (node k x l rll) (node rk rkx rlr rr)
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r)
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
node lrk lrkx (node lk lkx ll lrl) (node k x lrr r)
balance k x l r = f k x l r where
f | size l + size r <= 1 = node
| 5 * size l + 3 <= 2 * size r = case r of
Tip -> node
Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
then singleL
else doubleL
| 5 * size r + 3 <= 2 * size l = case l of
Tip -> node
Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
then singleR
else doubleR
| True = node
insert kx x t = case t of
Tip -> singleton kx x
Bin sz ky y l r -> case compare kx ky of
LT -> balance ky y (insert kx x l) r
GT -> balance ky y l (insert kx x r)
EQ -> Bin sz kx x l r
insertWith f kx x t = case t of
Tip -> singleton kx x
Bin sy ky y l r -> case compare kx ky of
LT -> balance ky y (insertWith f kx x l) r
GT -> balance ky y l (insertWith f kx x r)
EQ -> Bin sy kx (f x y) l r
mlookup kx t = case t of
Tip -> Nothing
Bin _ ky y l r -> case compare kx ky of
LT -> mlookup kx l
GT -> mlookup kx r
EQ -> Just y
fromList = foldl (\t (k, x) -> insert k x t) Tip
member k t = maybe False (const True) $ mlookup k t
t ! k = maybe undefined id $ mlookup k t
foldrWithKey f = go where
go z t = case t of
Tip -> z
Bin _ kx x l r -> go (f kx x (go z r)) l
toAscList = foldrWithKey (\k x xs -> (k,x):xs) []
keys = map fst . toAscList
-- Syntax tree.
data Type = TC String | TV String | TAp Type Type
arr a b = TAp (TAp (TC "->") a) b
data Extra = Basic String | Const Int | ChrCon Char | StrCon String | Link String String Qual
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat]
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred
data Constr = Constr String [Type]
data Pred = Pred String Type
data Qual = Qual [Pred] Type
instance Eq Type where
(TC s) == (TC t) = s == t
(TV s) == (TV t) = s == t
(TAp a b) == (TAp c d) = a == c && b == d
_ == _ = False
instance Eq Pred where (Pred s a) == (Pred t b) = s == t && a == b
data Instance = Instance
-- Type, e.g. Int for Eq Int.
Type
-- Dictionary name, e.g. "{Eq Int}"
String
-- Context.
[Pred]
-- Method definitions
(Map String Ast)
data Tycl = Tycl [String] [Instance]
data Neat = Neat
(Map String Tycl)
-- | Top-level definitions
[(String, Ast)]
-- | Typed ASTs, ready for compilation, including ADTs and methods,
-- e.g. (==), (Eq a => a -> a -> Bool, select-==)
[(String, (Qual, Ast))]
-- | Data constructor table.
(Map String [Constr]) -- AdtTab
-- | FFI declarations.
[(String, Type)]
-- | Exports.
[(String, String)]
-- | Module imports.
[String]
patVars = \case
PatLit _ -> []
PatVar s m -> s : maybe [] patVars m
PatCon _ args -> concat $ patVars <$> args
fvPro bound expr = case expr of
V s | not (elem s bound) -> [s]
A x y -> fvPro bound x `union` fvPro bound y
L s t -> fvPro (s:bound) t
Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
_ -> []
overFreePro s f t = case t of
E _ -> t
V s' -> if s == s' then f t else t
A x y -> A (overFreePro s f x) (overFreePro s f y)
L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts
beta s a t = case t of
E _ -> t
V v -> if s == v then a else t
A x y -> A (beta s a x) (beta s a y)
L v u -> if s == v then t else L v $ beta s a u
showParen b f = if b then ('(':) . f . (')':) else f
-- Parser.
data ParserState = ParserState
[(Char, (Int, Int))]
String
[Int]
(Map String (Int, Assoc))
readme (ParserState x _ _ _) = x
landin (ParserState _ x _ _) = x
indents (ParserState _ _ x _) = x
precs (ParserState _ _ _ x) = x
putReadme x (ParserState _ a b c) = ParserState x a b c
putLandin x (ParserState a _ b c) = ParserState a x b c
modIndents f (ParserState a b x c) = ParserState a b (f x) c
data Parser a = Parser (ParserState -> Either String (a, ParserState))
getParser (Parser p) = p
instance Functor Parser where fmap f x = pure f <*> x
instance Applicative Parser where
pure x = Parser \inp -> Right (x, inp)
(Parser f) <*> (Parser x) = Parser \inp -> do
(fun, t) <- f inp
(arg, u) <- x t
pure (fun arg, u)
instance Monad Parser where
return = pure
(Parser x) >>= f = Parser \inp -> do
(a, t) <- x inp
getParser (f a) t
instance Alternative Parser where
empty = bad ""
x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp
getPrecs = Parser \st -> Right (precs st, st)
putPrecs ps = Parser \(ParserState a b c _) -> Right ((), ParserState a b c ps)
notFollowedBy p = do
saved <- Parser \pasta -> Right (pasta, pasta)
ret <- p *> pure (bad "") <|> pure (pure ())
Parser \_ -> Right ((), saved)
ret
parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] $ singleton ":" (5, RAssoc) where
rowcol s rc = case s of
[] -> []
h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
advanceRC n (r, c)
| n `elem` [10, 11, 12, 13] = (r + 1, 1)
| n == 9 = (r, (c + 8)`mod`8)
| True = (r, c + 1)
indentOf pasta = case readme pasta of
[] -> 1
(_, (_, c)):_ -> c
ins c pasta = putLandin (c:landin pasta) pasta
angle n pasta = case indents pasta of
m:ms | m == n -> ins ';' pasta
| n + 1 <= m -> ins '}' $ angle n $ modIndents tail pasta
_ -> pasta
curly n pasta = case indents pasta of
m:ms | m + 1 <= n -> ins '{' $ modIndents (n:) pasta
[] | 1 <= n -> ins '{' $ modIndents (n:) pasta
_ -> ins '{' . ins '}' $ angle n pasta
sat f = Parser \pasta -> case landin pasta of
c:t -> if f c then Right (c, putLandin t pasta) else Left "unsat"
[] -> case readme pasta of
[] -> case indents pasta of
[] -> Left "EOF"
m:ms | m /= 0 && f '}' -> Right ('}', modIndents tail pasta)
_ -> Left "unsat"
(h, _):t | f h -> let
p' = putReadme t pasta
in case h of
'}' -> case indents pasta of
0:ms -> Right (h, modIndents tail p')
_ -> Left "unsat"
'{' -> Right (h, modIndents (0:) p')
_ -> Right (h, p')
_ -> Left "unsat"
char c = sat (c ==)
rawSat f = Parser \pasta -> case readme pasta of
[] -> Left "EOF"
(h, _):t -> if f h then Right (h, putReadme t pasta) else Left "unsat"
eof = Parser \pasta -> case pasta of
ParserState [] [] _ _ -> Right ((), pasta)
_ -> badpos pasta "want eof"
comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
(rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True
spaces = isNewline <$> rawSat isSpace
whitespace = do
offside <- or <$> many (spaces <|> comment)
Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta)
hexValue d
| d <= '9' = ord d - ord '0'
| d <= 'F' = 10 + ord d - ord 'A'
| d <= 'f' = 10 + ord d - ord 'a'
isNewline c = ord c `elem` [10, 11, 12, 13]
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:")
isSmall c = c <= 'z' && 'a' <= c || c == '_'
small = sat isSmall
large = sat \x -> (x <= 'Z') && ('A' <= x)
hexit = sat \x -> (x <= '9') && ('0' <= x)
|| (x <= 'F') && ('A' <= x)
|| (x <= 'f') && ('a' <= x)
digit = sat \x -> (x <= '9') && ('0' <= x)
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit
nameTailChar = small <|> large <|> digit <|> char '\''
nameTailed p = liftA2 (:) p $ many nameTailChar
escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal))
tokOne delim = escape <|> rawSat (delim /=)
charSeq = mapM char
tokChar = between (char '\'') (char '\'') (tokOne '\'')
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"'
quasiquoteStr = charSeq "[r|" *> quasiquoteBody
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody
tokStr = quoteStr <|> quasiquoteStr
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr
varish = lexeme $ nameTailed small
bad s = Parser \pasta -> badpos pasta s
badpos pasta s = Left $ loc $ ": " ++ s where
loc = case readme pasta of
[] -> ("EOF"++)
(_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
varId = do
s <- varish
if elem s
["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
then bad $ "reserved: " ++ s else pure s
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol)
varSym = lexeme $ do
s <- varSymish
if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s
conId = lexeme $ nameTailed large
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol
conSym = do
s <- conSymish
if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s
special c = lexeme $ sat (c ==)
comma = special ','
semicolon = special ';'
lParen = special '('
rParen = special ')'
lBrace = special '{'
rBrace = special '}'
lSquare = special '['
rSquare = special ']'
backquote = special '`'
lexeme f = f <* whitespace
lexemePrelude = whitespace *>
Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
Left _ -> Right ((), curly (indentOf pasta) pasta)
Right _ -> Right ((), pasta)
curlyCheck f = do
Parser \pasta -> Right ((), modIndents (0:) pasta)
r <- f
Parser \pasta -> let pasta' = modIndents tail pasta in case readme pasta of
[] -> Right ((), curly 0 pasta')
('{', _):_ -> Right ((), pasta')
(_, (_, col)):_ -> Right ((), curly col pasta')
pure r
conOf (Constr s _) = s
specialCase (h:_) = '|':conOf h
mkCase t cs = (specialCase cs,
( Qual [] $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
, E $ Basic "I"))
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", [])
scottEncode _ ":" _ = E $ Basic "CONS"
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs)
scottConstr t cs (Constr s ts) = (s,
(Qual [] $ foldr arr t ts , scottEncode (map conOf cs) s $ mkStrs ts))
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs
mkFFIHelper n t acc = case t of
TC s -> acc
TAp (TC "IO") _ -> acc
TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc
updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs
addAdt t cs (Neat tycl fs typed dcs ffis ffes ims) =
Neat tycl fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis ffes ims
emptyTycl = Tycl [] []
addClass classId v (sigs, defs) (Neat tycl fs typed dcs ffis ffes ims) = let
vars = take (size sigs) $ show <$> [0..]
selectors = zipWith (\var (s, t) -> (s, (Qual [Pred classId v] t,
L "@" $ A (V "@") $ foldr L (V var) vars))) vars $ toAscList sigs
defaults = map (\(s, t) -> if member s sigs then ("{default}" ++ s, t) else error $ "bad default method: " ++ s) $ toAscList defs
Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
tycl' = insert classId (Tycl (keys sigs) is) tycl
in if null ms then Neat tycl' (defaults ++ fs) (selectors ++ typed) dcs ffis ffes ims
else error $ "duplicate class: " ++ classId
addInstance classId ps ty ds (Neat tycl fs typed dcs ffis ffes ims) = let
Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
tycl' = insert classId (Tycl ms $ Instance ty name ps (fromList ds):is) tycl
name = '{':classId ++ (' ':shows ty "}")
in Neat tycl' fs typed dcs ffis ffes ims
addFFI foreignname ourname t (Neat tycl fs typed dcs ffis ffes ims) = let
fn = A (E $ Basic "F") $ E $ Const $ length ffis
in Neat tycl fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) ffes ims
addDefs ds (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl (ds ++ fs) typed dcs ffis ffes ims
addImport im (Neat tycl fs typed dcs ffis exs ims) = Neat tycl fs typed dcs ffis exs (im:ims)
addExport e f (Neat tycl fs typed dcs ffis ffes ims) = Neat tycl fs typed dcs ffis ((e, f):ffes) ims
parseErrorRule = Parser \pasta -> case indents pasta of
m:ms | m /= 0 -> Right ('}', modIndents tail pasta)
_ -> badpos pasta "missing }"
res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
reservedSeq = if elem w ["let", "where", "do", "of"]
then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol)
paren = between lParen rParen
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon
maybeFix s x = if elem s $ fvPro [] x then A (V "fix") (L s x) else x
nonemptyTails [] = []
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt
joinIsFail t = A (L "join#" t) (V "fail#")
addLets ls x = foldr triangle x components where
vs = fst <$> ls
ios = foldr (\(s, dsts) (ins, outs) ->
(foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
(Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
triangle names expr = let
tnames = nonemptyTails names
suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
insLams vs t = foldr L t vs
in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames
data Assoc = NAssoc | LAssoc | RAssoc
instance Eq Assoc where
NAssoc == NAssoc = True
LAssoc == LAssoc = True
RAssoc == RAssoc = True
_ == _ = False
precOf s precTab = maybe 9 fst $ mlookup s precTab
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab
opFold precTab f x xs = case xs of
[] -> pure x
(op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
Nothing -> case assocOf op precTab of
NAssoc -> case xt of
[] -> pure $ f op x y
y:yt -> bad "NAssoc repeat"
LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
Just y -> bad "Assoc clash"
qconop = conSym <|> res ":" <|> between backquote backquote conId
qconsym = conSym <|> res ":"
op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId)
con = conId <|> paren qconsym
var = varId <|> paren varSym
tycon = do
s <- conId
pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s
aType =
lParen *>
( rParen *> pure (TC "()")
<|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
<|> tycon
<|> TV <$> varId
<|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
bType = foldl1 TAp <$> some aType
_type = foldr1 arr <$> sepBy bType (res "->")
fixityDecl w a = do
res w
n <- lexeme integer
os <- sepBy op comma
precs <- getPrecs
putPrecs $ foldr (\o m -> insert o (n, a) m) precs os
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc
cDecls = first fromList . second fromList . foldr ($) ([], []) <$> braceSep cDecl
cDecl = first . (:) <$> genDecl <|> second . (++) <$> defSemi
genDecl = (,) <$> var <*> (res "::" *> _type)
classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> cDecls))
simpleClass = Pred <$> conId <*> _type
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma)
instDecl = res "instance" *>
((\ps cl ty defs -> addInstance cl ps ty defs) <$>
(scontext <* res "=>" <|> pure [])
<*> conId <*> _type <*> (res "where" *> braceDef))
letin = addLets <$> between (res "let") (res "in") braceDef <*> expr
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
(res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr)
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]")
alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->")
cas = flip A <$> between (res "case") (res "of") expr <*> alts
lamCase = curlyCheck (res "case") *> alts
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr))
flipPairize y x = A (A (V ",") x) y
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")))
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id)
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"))
maybePureUnit = maybe (V "pure" `A` V "()") id
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
<|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
<|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt)
compQual =
(\p xs e -> A (A (V "concatMap") $ onePat [p] e) xs)
<$> pat <*> (res "<-" *> expr)
<|> (\b e -> A (A (A (V "if") b) e) $ V "[]") <$> expr
<|> addLets <$> (res "let" *> braceDef)
sqExpr = between lSquare rSquare $
((&) <$> expr <*>
( res ".." *>
( (\hi lo -> (A (A (V "enumFromTo") lo) hi)) <$> expr
<|> pure (A (V "enumFrom"))
)
<|> res "|" *>
((. A (V "pure")) . foldr (.) id <$> sepBy1 compQual comma)
<|> (\t h -> listify (h:t)) <$> many (comma *> expr)
)
)
<|> pure (V "[]")
atom = ifthenelse <|> doblock <|> letin <|> sqExpr <|> section
<|> cas <|> lam <|> (paren comma *> pure (V ","))
<|> V <$> (con <|> var) <|> literal
aexp = foldl1 A <$> some atom
withPrec precTab n p = p >>= \s ->
if n == precOf s precTab then pure s else Parser $ const $ Left ""
exprP n = if n <= 9
then getPrecs >>= \precTab
-> exprP (succ n) >>= \a
-> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
-> opFold precTab (\op x y -> A (A (V op) x) y) a as
else aexp
expr = exprP 0
gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]")
apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
<|> flip PatVar Nothing <$> (res "_" *> pure "_")
<|> flip PatCon [] <$> gcon
<|> PatLit <$> literal
<|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" [])
<$> between lSquare rSquare (sepBy pat comma)
<|> paren (foldr1 pairPat <$> sepBy1 pat comma <|> pure (PatCon "()" []))
where pairPat x y = PatCon "," [x, y]
binPat f x y = PatCon f [x, y]
patP n = if n <= 9
then getPrecs >>= \precTab
-> patP (succ n) >>= \a
-> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
-> opFold precTab binPat a as
else PatCon <$> gcon <*> many apat <|> apat
pat = patP 0
maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id)
guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
V "True" -> \_ -> y
_ -> A (A (A (V "if") x) y)
) <$> (res "|" *> expr) <*> (res s *> expr))
onePat vs x = joinIsFail $ Pa [(vs, x)]
defOnePat vs x = Pa [(vs, x)]
opDef x f y rhs = [(f, defOnePat [x, y] rhs)]
leftyPat p expr = case pvars of
[] -> []
(h:t) -> let gen = '@':h in
(gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
where
pvars = filter (/= "_") $ patVars p
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
<|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=")
coalesce = \case
[] -> []
h@(s, x):t -> case t of
[] -> [h]
(s', x'):t' -> let
f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
f _ _ = error "bad multidef"
in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
defSemi = coalesce . concat <$> sepBy1 def (some semicolon)
braceDef = concat <$> braceSep defSemi
simpleType c vs = foldl TAp (TC c) (map TV vs)
conop = conSym <|> between backquote backquote conId
constr = (\x c y -> Constr c [x, y]) <$> aType <*> conop <*> aType
<|> Constr <$> conId <*> many aType
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|")
impDecl = addImport <$> (res "import" *> conId)
topdecls = braceSep
$ adt
<|> classDecl
<|> instDecl
<|> res "foreign" *>
( res "import" *> var *> (addFFI <$> lexeme tokStr <*> var <*> (res "::" *> _type))
<|> res "export" *> var *> (addExport <$> lexeme tokStr <*> var)
)
<|> addDefs <$> defSemi
<|> fixity *> pure id
<|> impDecl
haskell = between lexemePrelude eof $ some $ (,) <$> (res "module" *> conId <* res "where" <|> pure "Main") <*> topdecls
parseProgram s = fst <$> parse haskell s
-- Primitives.
primAdts =
[ (TC "()", [Constr "()" []])
, (TC "Bool", [Constr "True" [], Constr "False" []])
, (TAp (TC "[]") (TV "a"), [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]])
, (TAp (TAp (TC ",") (TV "a")) (TV "b"), [Constr "," [TV "a", TV "b"]])
]
prims = let
ro = E . Basic
dyad s = TC s `arr` (TC s `arr` TC s)
bin s = A (ro "Q") (ro s)
in map (second (first $ Qual [])) $
[ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
, ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
, ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
, ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
, ("fix", (arr (arr (TV "a") (TV "a")) (TV "a"), ro "Y"))
, ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
, ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
, ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
, ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
, ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
, ("primitiveError", (arr (TAp (TC "[]") (TC "Char")) (TV "a"), ro "ERR"))
, ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
, ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
A (ro "T") (ro "READREF")))
, ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
A (A (ro "R") (ro "WRITEREF")) (ro "B")))
, ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
, ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
, ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
, ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
]
++ map (\(s, v) -> (s, (dyad "Int", bin v)))
[ ("intAdd", "ADD")
, ("intSub", "SUB")
, ("intMul", "MUL")
, ("intDiv", "DIV")
, ("intMod", "MOD")
, ("intQuot", "DIV")
, ("intRem", "MOD")
]
-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC
debruijn n e = case e of
E x -> Pass $ Lf x
V v -> maybe (Pass $ LfVar v) id $
foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
A x y -> App (debruijn n x) (debruijn n y)
L s t -> La (debruijn (s:n) t)
-- Kiselyov bracket abstraction.
data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem
lf = Lf . Basic
x ## y = case x of
Defer -> case y of
Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
Closed d -> Need $ Closed (Nd (lf "T") d)
Need e -> Need $ Closed (Nd (lf "S") (lf "I")) ## e
Weak e -> Need $ Closed (lf "T") ## e
Closed d -> case y of
Defer -> Need $ Closed d
Closed dd -> Closed $ Nd d dd
Need e -> Need $ Closed (Nd (lf "B") d) ## e
Weak e -> Weak $ Closed d ## e
Need e -> case y of
Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
Closed d -> Need $ Closed (Nd (lf "R") d) ## e
Need ee -> Need $ Closed (lf "S") ## e ## ee
Weak ee -> Need $ Closed (lf "C") ## e ## ee
Weak e -> case y of
Defer -> Need e
Closed d -> Weak $ e ## Closed d
Need ee -> Need $ Closed (lf "B") ## e ## ee
Weak ee -> Weak $ e ## ee
babs t = case t of
Ze -> Defer
Su x -> Weak $ babs x
Pass x -> Closed x
La t -> case babs t of
Defer -> Closed $ lf "I"
Closed d -> Closed $ Nd (lf "K") d
Need e -> e
Weak e -> Closed (lf "K") ## e
App x y -> babs x ## babs y
nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x
optim t = case t of
Nd x y -> go (optim x) (optim y)
_ -> t
where
go (Lf (Basic "I")) q = q
go p q@(Lf (Basic c)) = case c of
"K" -> case p of
Lf (Basic "B") -> lf "BK"
_ -> Nd p q
"I" -> case p of
Lf (Basic r) -> case r of
"C" -> lf "T"
"B" -> lf "I"
"K" -> lf "KI"
_ -> Nd p q
Nd p1 p2 -> case p1 of
Lf (Basic "B") -> p2
Lf (Basic "R") -> Nd (lf "T") p2
_ -> Nd (Nd p1 p2) q
_ -> Nd p q
"T" -> case p of
Nd (Lf (Basic "B")) (Lf (Basic r)) -> case r of
"C" -> lf "V"
"BK" -> lf "LEFT"
_ -> Nd p q
_ -> Nd p q
"V" -> case p of
Nd (Lf (Basic "B")) (Lf (Basic "BK")) -> lf "CONS"
_ -> Nd p q
_ -> Nd p q
go p q = Nd p q
app01 s x y = maybe (A (L s x) y) snd $ go x where
go expr = case expr of
E _ -> Just (False, expr)
V v -> Just $ if s == v then (True, y) else (False, expr)
A l r -> do
(a, l') <- go l
(b, r') <- go r
if a && b then Nothing else pure (a || b, A l' r')
L v t -> if v == s then Just (False, expr) else second (L v) <$> go t
optiApp t = case t of
A x y -> let
x' = optiApp x
y' = optiApp y
in case x' of
L s v -> app01 s v y'
_ -> A x' y'
L s x -> L s (optiApp x)
_ -> t
-- Pattern compiler.
rewritePats dcs = \case
[] -> pure $ V "join#"
vsxs@((as0, _):_) -> case as0 of
[] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
_ -> do
let k = length as0
n <- get
put $ n + k
let vs@(vh:vt) = take k $ (`shows` "#") <$> [n..]
cs <- flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at vt)
flip (foldr L) vs <$> rewriteCase dcs vh Tip cs
patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y
rewriteCase dcs caseVar tab = \case
[] -> flush $ V "join#"
((v, x):rest) -> go v x rest
where
rec = rewriteCase dcs caseVar
go v x rest = case v of
PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
PatVar s m -> let x' = beta s (V caseVar) x in case m of
Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
Just v' -> go v' x' rest
PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
flush onFail = case toAscList tab of
[] -> pure onFail
-- TODO: Check rest of `tab` lies in cs.
(firstC, _):_ -> do
let cs = maybe undefined id $ dcs firstC
jumpTable <- mapM (\(Constr s ts) -> case mlookup s tab of
Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
Just f -> rewritePats dcs $ f []
) cs
pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail
secondM f (a, b) = (a,) <$> f b
patternCompile dcs t = optiApp $ evalState (go t) 0 where
go t = case t of