forked from broadinstitute/2020_scWorkshop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05-Introduction-R-Bioconductor.Rmd
695 lines (476 loc) · 19.2 KB
/
05-Introduction-R-Bioconductor.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
---
title: "05-Introduction-R"
output: html_document
---
```{r settings, echo=FALSE}
library(knitr)
opts_chunk$set(out.width='90%', fig.align = 'center')
library(Seurat)
library(Matrix)
library(ggplot2)
```
# Introduction R/Bioconductor
```{bash, eval = FALSE}
# mkdir data
wget https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz -O data/pbmc3k_filtered_gene_bc_matrices.tar.gz
cd data; tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
cd ..
```
## Start Environment
### Local Command
```{bash docker_script_local, eval = FALSE}
# chmod 700 ./docker/run_docker.sh
./docker/run_docker.sh
```
**full command**
```{bash start_env_local, eval = FALSE}
## maybe take away the --rm so they can save the container for later
## run from your home directory
cd 2020scworkshop
## example for user17
docker run --rm -it \
-e DISABLE_AUTH=true \
-v $PWD:/home/rstudio/materials \
-p 8787:8787 kdgosik/2020scworkshop
```
**Explaination of commands**
```{bash docker_cmds, eval = FALSE}
- docker: command to run docker
- run: asking docker to run a container
- --rm: flag to remove the container when you exit from it
- nothing will be saved from your session to access again later
- this flag can be removed to keep container
- -it: flag to run the container interactively
- - this will keep all session output displaying on the terminal
- - to stop container go to terminal and press Crtl+c
- -v $PWD:/home/rstudio: map your home directory to a directory inside docker container called home/rstudio
- -p 8787:8787: map docker container port of 8787(rstudio port default) to your computer port 8787
- kdgosik/2020scworkshop: the image to run. It will be the image into a container if not already built on your computer
- [image link](https://hub.docker.com/r/kdgosik/2020scworkshop)
```
### AWS Command
```{bash docker_script_aws, eval = FALSE}
# chmod 700 ./docker/run_docker.sh
./docker/run_docker_aws.sh 9017
```
```{bash start_env_aws, eval = FALSE}
## maybe take away the --rm so they can save the container for later
## run from your home directory
cd 2020scworkshop
## example for user17
docker run --rm -it \
-e PASSWORD=train \
-v $PWD:/home/rstudio/materials \
-p 9017:8787 kdgosik/2020scworkshop
```
**Explaination of commands**
```{bash docker_cmds_aws, eval = FALSE}
- docker: command to run docker
- run: asking docker to run a container
- --rm: flag to remove the container when you exit from it
- nothing will be saved from your session to access again later
- this flag can be removed to keep container
- -it: flag to run the container interactively
- - this will keep all session output displaying on the terminal
- - to stop container go to terminal and press Crtl+c
- -v $PWD:/home/rstudio/materials: map your home directory to a directory inside docker container called home/rstudio
- -p 9017:8787: map docker container port of 8787(rstudio port default) to your computer port 9017
- kdgosik/2020scworkshop: the image to run. It will be the image into a container if not already built on your computer
- [image link](https://hub.docker.com/r/kdgosik/2020scworkshop)
```
- [localhost:9017](https://localhost:9017) or on AWS
- [<AWS PUBLIC IP ADDRESS>:9017](https://:9017)
- ec2-<AWS PUBLIC IP ADDRESS>.us-west-2.compute.amazonaws.com:$PORT_NUMBER
- ec2-54-202-32-102.us-west-2.compute.amazonaws.com:9017
- R/Rstudio parts
- Data Types and classes
- Packages and where to get them
- S3 vs S4
- Visualizations and ggplot
- Installing packages
- Data-types
- Data manipulation, slicing
- Strings manipulations
- Introducing object oriented programming / S4 objects
- Visualization tools
- Bonus create FeaturePlot from Seurat in base ggplot
- Bonus: run RSEM on Dana’s bam files if you are bored
## Installing packages
### CRAN
The Comprehensive R Archive Network [CRAN](https://cran.r-project.org/) is the biggest archive of R packages. There are few requirements for uploading packages besides building and installing succesfully, hence documentation and support is often minimal and figuring how to use these packages can be a challenge it itself. CRAN is the default repository R will search to find packages to install:
```{r cran_inst, eval=FALSE}
install.packages("devtools")
# or multiple packages
install.packages(c("ggplot2", "stringr"))
```
### Github
[Github](https://github.com/) isn't specific to R, any code of any type in any state can be uploaded. There is no guarantee a package uploaded to github will even install, nevermind do what it claims to do. R packages can be downloaded and installed directly from github using the "devtools" package installed above.
```{r devtools_inst, eval=FALSE}
## username/repository
devtools::install_github("satijalab/seurat") # latest stable version of Seurat package
```
Github is also a version control system which stores multiple versions of any package. By default the most recent "master" version of the package is installed. If you want an older version or the development branch this can be specified using the "ref" parameter:
```{r devtools2_inst, eval=FALSE}
# different branch
devtools::install_github("satijalab/seurat", ref="release3.0")
# previous commit
## Merge branch 'develop' into feat/MultiModal
## - Shiwei Zheng committed on Jul 2, 2018
devtools::install_github("tallulandrews/M3Drop", ref="551014f488770627ab154a62e59d49df5df98a3f")
```
Note: make sure you re-install the M3Drop master branch for later in the course.
### Bioconductor
Bioconductor is a repository of R-packages specifically for biological analyses. It has the strictest requirements for submission, including installation on every platform and full documentation with a tutorial (called a vignette) explaining how the package should be used. Bioconductor also encourages utilization of standard data structures/classes and coding style/naming conventions, so that, in theory, packages and analyses can be combined into large pipelines or workflows.
Bioconductor also requires creators to support their packages and has a regular 6-month release schedule. Make sure you are using the most recent release of bioconductor before trying to install packages for the course.
```{r bioc_inst, eval = FALSE}
## >= R 3.5.0
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("Rsamtools", ask = FALSE)
```
### Source
The final way to install packages is directly from source. In this case you have to download a fully built source code file, usually packagename.tar.gz, or clone the github repository and rebuild the package yourself. Generally this will only be done if you want to edit a package yourself, or if for some reason the former methods have failed. You can also get previous packages that aren't supported any more on the [CRAN package archive](https://cran.r-project.org/)
```{r src_isnt, eval=FALSE}
## Get an old package and install from source
install.packages("GenABEL_1.8-0.tar.gz", type="source")
```
## Installation instructions:
All the packages necessary for this course are available [here](https://github.com/broadinstitute/2020_scWorkshop). A list of the packages will be on the README.md for the repository. A script is also available inside the docker/install.R file.
### Classes/Types
R is a high level language so the underlying data-type is generally not important. The exception if you are accessing R data directly using another language such as C, but that is beyond the scope of this course. Instead we will consider the basic data classes: numeric, integer, logical, and character, and the higher level data class called "factor". You can check what class your data is using the "class()" function.
#### Integer
```{r r_ints}
x <- 4 ## assign value of 4 to x
class(x) ## check class of x
is.integer(x) ## check if x is an integer
is.numeric(x) ## check if x is numeric
x <- as.numeric(x) ## assign x to be an numeric
is.numeric(x) ## check if the assignment worked
class(x) ## check if the assignment worked
x ## check value of x
```
#### Numeric
```{r num_types}
## assign value of 1.414 to y
y <- 1.414
## check class of y
class(y)
## check if y is numeric
is.numeric(y)
## check if y is an integer
is.integer(y)
## assign y to be an integer
y <- as.integer(y)
## check if the assignment worked
is.integer(y)
## check value of y
y
```
#### Logical/ Boolean
The `logical` class stores boolean truth values, i.e. TRUE and FALSE. It is used for storing the results of logical operations and conditional statements will be coerced to this class. Most other data-types can be coerced to boolean without triggering (or "throwing") error messages, which may cause unexpected behaviour.
```{r logi_types}
z <- TRUE ## assign value of TRUE to z
class(z) ## check class of z
is.logical(z) ## check if z is of logical type
```
### Data structures
- Homogeneous
- 1D: atomic vector
- 2D: matrix
- nD: array
- Heterogeneous
- 1D: list
- 2D: data.frame
#### Character Vectors
```{r char_types}
## assign a character vector with c() operator
character_vector <- c("A", "C", "T", "G", "C", "T", "G", "C", "G", "A", "T", "G", "A", "C", "G", "A", "C")
## check class
class(character_vector)
## access the 3rd element with [] operator
## *note*: R is index starts at 1 (other programming languages start at 0)
character_vector[3]
## access 3rd through 6th elemenet
character_vector[3:6]
## access the elements 1,4,7,10 with c()
character_vector[c(1, 4, 7, 10)]
## access all the A's
character_vector[grep("A", character_vector)]
```
#### Numeric Vector
The "numeric" class is the default class for storing any numeric data - integers, decimal numbers, numbers in scientific notation, etc...
```{r num_vecs}
## assign a character vector with c() operator
numeric_vector <- c(1, 5, 21, 17, 98, 35, 11, 13)
## check class
class(numeric_vector)
## access the 5th element with [] operator
numeric_vector[5]
## access 2nd through 4th elemenet
numeric_vector[2:4]
```
```{r num_vec2}
## backticks ` ` allow you to give names with non-typical characters
`numeric?_vector` <- c("A", 1, 5, 21, 17, 98, 35, 11, 13)
## check vector
`numeric?_vector`
## check class (Notice the quotation marks on the numbers!)
class(`numeric?_vector`)
```
#### Factor Vector
String/Character data is very memory inefficient to store, each letter generally requires the same amount of memory as any integer. Thus when storing a vector of strings with repeated elements it is more efficient assign each element to an integer and store the vector as integers and an additional string-to-integer association table. Thus, by default R will read in text columns of a data table as factors.
```{r factor_type}
factor_vector <- factor(numeric_vector)
factor_vector
```
#### Named Vector
```{r name_vec}
names(numeric_vector) <- paste0("Patient", 1 : length(numeric_vector))
numeric_vector
```
#### List
```{r list_type}
## change the c() operator to list() operator
new_list <- list("A", 1, 5, 21, 17, 98, 35, 11, 13)
new_list
```
```{r list_elem}
## get 2nd element of list
new_list[[2]]
```
```{r name_list}
names(new_list) <- paste0("Patient", 1 : length(new_list))
new_list
```
```{r name_2list}
## get 2nd element of list
new_list[[2]]
```
- 2D
#### matrix
**Create Matrix**
```{r mat_type}
## create numeric matrix
numeric_matrix <- matrix(sample(1:10, 100, replace = TRUE), nrow = 10, ncol = 10)
class(numeric_matrix) ## check class
```
**Check Structure**
```{r strct}
str(numeric_matrix)
```
**Get 3rd Row**
```{r num_mat}
## get 3rd row
numeric_matrix[3, ]
```
**Get 4th Column**
```{r num_mat_col}
## get 4th colum
numeric_matrix[, 4]
```
#### data.frame
**Get data.frame**
```{r df_type}
## built in R data.frame iris
head(iris)
```
**Check Class**
```{r df_class}
class(iris)
```
**Check Structure**
```{r df_struct}
str(iris)
```
**Get 3rd Row**
```{r df_col_sub}
## get 3rd row
iris[3,]
```
**Get 4th Column**
```{r df_row_sub}
## get 4th colum
iris[,4]
```
**Get 3rd Row**
```{r num_mat_row}
## get 3rd row
numeric_matrix[3, ]
```
**Get Species Variable**
```{r df_var}
## get variable
iris$Species
```
### Detour to S3/S4
- S3 most of R uses
- Bioconductor requires R packages to be written as S4 objects
- OO field [guide](http://adv-r.had.co.nz/OO-essentials.html)
- Closer to a typical programming language
- Classes/Methods and Generics
- Lots of Generics implemented for Bioinformatics!
Different way to access values. Need to use the @ symbol instead of $
- (@ is equivalent to $, and slot() to [[.)
```{r obj_type, eval= FALSE}
## example
object@
```
#### Sparse Matrix
Triplet format for storing a matrix
row, column, value
i, p, x
Different from base R. Uses the S4 methods that Bioconductor uses.
```{r sparse_mat, eval= FALSE}
sparse_matrix <- pbmc_small@assays$RNA@data[1:10, ]
class(sparse_matrix)
```
**ith row - 1**
```{r sparse_mat_idx, eval= FALSE}
sparse_matrix@i
```
**pth column - 1**
```{r sp_mat_col, eval= FALSE}
sparse_matrix@p
```
**value**
```{r sp_x, eval= FALSE}
sparse_matrix@x
```
**Get First Value**
```{r sp_mat_sub, eval= FALSE}
sparse_matrix[2,1]
```
**dense matrix**
```{r dense_mat, eval= FALSE}
dense_matrix <- as.matrix(sparse_matrix)
class(dense_matrix)
```
```{r struct_mat, eval= FALSE}
str(dense_matrix)
```
**Get First Value**
```{r dense_mat_sub, eval= FALSE}
dense_matrix[2,1]
```
#### Functions
```{r funcs, eval = FALSE}
create_function <- function(x, y) {
}
```
#### Reading Files
```{r read_file, eval = FALSE}
## read csv files
read.csv("PATH/TO/FILENAME.csv")
## read tsv files
read.delim("PATH/TO/FILENAME.tsv", sep = '\t')
```
## More information
You can get more information about any R commands relevant to these datatypes using by typing `?function` in an interactive session.
### Checking for help for any function!
- start with a ? (this indicates you need the help menu)
- then the function name to get help on
```{r ggplot_help}
library(ggplot2)
?ggplot ## ggplot is a function, how do we use it?
```
## Grammer of Graphics (ggplot2)
### What is ggplot2?
ggplot2 is an R package designed by Hadley Wickham which facilitates data plotting. In this lab, we will touch briefly on some of the features of the package. If you would like to learn more about how to use ggplot2, we would recommend reading "ggplot2 Elegant graphics for data analysis", by Hadley Wickham or checking out his original paper on the [package](http://vita.had.co.nz/papers/layered-grammar.pdf)
- Data: Always start with the data, identify the dimensions you want to visualize.
- Aesthetics: Confirm the axes based on the data dimensions, positions of various data points in the plot. Also check if any form of encoding is needed including size, shape, color and so on which are useful for plotting multiple data dimensions.
- Scale: Do we need to scale the potential values, use a specific scale to represent multiple values or a range?
- Geometric objects: These are popularly known as ‘geoms’. This would cover the way we would depict the data points on the visualization. Should it be points, bars, lines and so on?
- Statistics: Do we need to show some statistical measures in the visualization like measures of central tendency, spread, confidence intervals?
- Facets: Do we need to create subplots based on specific data dimensions?
- Coordinate system: What kind of a coordinate system should the visualization be based on — should it be cartesian or polar?
```{r img_ggplot, echo = FALSE}
knitr::include_graphics("images/components_grammar_graphics.png")
```
```{r ggplot_intro, eval = FALSE, echo = FALSE}
library(ggplot2)
df <- data.frame(x = rnorm(50), y = rnorm(50))
p <- ggplot(quartet, aes(x, y)) + geom_point()
p <- p + geom_smooth(method = lm, se = FALSE)
p <- p + facet_wrap(~set)
p
```
### Principles of ggplot2
* Your data must be a dataframe if you want to plot it using ggplot2.
* Use the `aes` mapping function to specify how variables in the dataframe map to features on your plot
* Use geoms to specify how your data should be represented on your graph eg. as a scatterplot, a barplot, a boxplot etc.
- Data: Always start with the data, identify the dimensions you want to visualize.
```{r ggplot_seurat}
library(Seurat)
library(ggplot2)
gbm <- pbmc_small@assays$RNA@data
gbm <- as.data.frame(as.matrix(t(gbm)))
new_plot <- ggplot(gbm)
```
- Aesthetics: Confirm the axes based on the data dimensions, positions of various data points in the plot. Also check if any form of encoding is needed including size, shape, color and so on which are useful for plotting multiple data dimensions.
**1D Plots**
```{r 1d_plot}
new_plot_1dx <- ggplot(gbm, aes(x = MS4A1))
new_plot_1dx
```
- Scale: Do we need to scale the potential values, use a specific scale to represent multiple values or a range?
- Geometric objects: These are popularly known as ‘geoms’. This would cover the way we would depict the data points on the visualization. Should it be points, bars, lines and so on?
```{r 1dx_plot}
## ggplot(gbm, aes(x = MS4A1)) + geom_histogram()
## or
## new_plot_1dx <- new_plot_1dx + geom_histogram() ## reassign
new_plot_1dx + geom_histogram()
```
#### Lab A
Use different geom_ to make a different plots
- try _bar()
- try _density()
```{r dense_plot}
new_plot_1dx + geom_density()
```
- Statistics: Do we need to show some statistical measures in the visualization like measures of central tendency, spread, confidence intervals?
```{r hist_plot}
ggplot(gbm, aes(x = MS4A1)) + geom_histogram() + stat_bin(bins = 10)
```
**2D Plots**
```{r 2d_plot}
new_plot_2d <- ggplot(gbm, aes(x = MS4A1, y = CD79B))
```
```{r scatter_plot}
## scatter plot
new_plot_2d + geom_point()
```
#### Lab B
Use different geom_ to make a different plots
- try _bar_abline()
- try _bin2d()
```{r 2d_exer}
new_plot_2d
```
- Adding Statisitics in 2D plots
- Regression line (lm - linear model using OLS regression)
```{r 2d_exer_2}
ggplot(gbm, aes(MS4A1, CD79B)) + geom_point() + stat_smooth(method = "lm")
```
- Adding Text Labels
```{r add_text}
## notice plus `+` at the end of each line, adding a new layer!
ggplot(gbm, aes(MS4A1, CD79B)) + ## Data layer
geom_point() + ## Geometry layer
stat_smooth(method = "lm") + ##
geom_text(aes(label = rownames(gbm)))
```
#### Lab C
Play arund with ggplot2. See what geoms to add and layers to include.
```{r labc}
ggplot(gbm, aes(x = MS4A1, y = CD79B))
```
## Reference
- [R for Data Science](https://r4ds.had.co.nz/)
- [Advanced R](http://adv-r.had.co.nz/)
- [Bioconductor Workflows](http://bioconductor.org/packages/release/BiocViews.html#___Workflow)
- [Bioconductor Presentation](http://www.bioconductor.org/help/course-materials/2010/AdvancedR/S4InBioconductor.pdf)
- [Original ggplot2 paper](http://vita.had.co.nz/papers/layered-grammar.pdf)
- [ggplot2 reference](https://ggplot2.tidyverse.org/reference/index.html)
- [ggplot2 cheatsheet](https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf)
- [blog post](https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149)
- [Hemberg Lab](https://hemberg-lab.github.io/scRNA.seq.course/introduction-to-rbioconductor.html#an-introduction-to-ggplot2)