-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathteameval.py
130 lines (103 loc) · 4.84 KB
/
teameval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import argparse
from module.wandb import draw_result_chart_wandb, init_wandb, log_wandb, login_wandb, show_images_wandb
import os
from importlib import import_module
import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from sklearn.metrics import f1_score
from datasets.dataset import basicDatasetA, MaskBaseDataset
def load_model(saved_model, filename, modelname, num_classes, device):
model = None
if len(data := [s for s in os.listdir(saved_model) if s.endswith(filename)]) == 1:
model_cls = getattr(import_module("models.model"), modelname)
model = model_cls(
num_classes=num_classes
)
# model = torch.nn.DataParallel(model)
model_path = os.path.join(saved_model, data[0])
model.load_state_dict(torch.load(model_path, map_location=device))
else :
model_cls = getattr(import_module("models.model"), 'ensemble')
model = model_cls(
modelname = modelname,
length = len(data),
num_classes=num_classes,
device = device
)
# model = torch.nn.DataParallel(model)
for M, d in zip(model.superM, data):
model_path = os.path.join(saved_model, d)
M.load_state_dict(torch.load(model_path, map_location=device))
return model
@torch.no_grad()
def inference(args):
"""
"""
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
model = load_model(args.save_dir, args.filename, args.model, args.num_classes, device).to(device)
model.eval()
valid_transform_module = getattr(import_module("trans.trans"), args.validaug) # default: BaseAugmentation
valid_transform = valid_transform_module(
resize=args.resize,
)
dataset = basicDatasetA(data_dir=args.data_dir, mode='eval', transform=valid_transform)
loader = DataLoader(
dataset,
batch_size=args.batch_size,
num_workers=8,
shuffle=False,
pin_memory=use_cuda,
drop_last=False,
)
print("Calculating inference results..")
val_acc_items = []
val_f1_items = []
total_preds = []
total_labels = []
init_wandb('team_eval', args)
with torch.no_grad():
for idx, train_batch in enumerate(loader):
inputs, labels = train_batch
inputs = inputs.to(device)
labels = labels.to(device)
outs = model(inputs)
preds = torch.argmax(outs, dim=-1)
acc_item = (labels == preds).sum().item()
f1 = f1_score(labels.data.cpu().numpy(), preds.cpu().numpy(), average='macro')
total_preds.extend(preds.cpu().numpy())
total_labels.extend(labels.data.cpu().numpy())
val_acc_items.append(acc_item)
val_f1_items.append(f1)
show_images_wandb(inputs, labels, preds.cpu().numpy())
val_acc = np.sum(val_acc_items) / len(dataset)
val_f1 = np.sum(val_f1_items) / len(loader)
print(
f"[Eval] acc : {val_acc:4.2%}, f1: {val_f1:5.4}"
)
draw_result_chart_wandb(total_preds, 'predicts')
draw_result_chart_wandb(total_labels, 'y_labels')
log_wandb('team_eval', val_acc, val_f1, False)
print(f'Team eval Done!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data and model checkpoints directories
parser.add_argument('--batch_size', type=int, default=128, help='input batch size for validing (default: 128)')
parser.add_argument('--model', type=str, default='rexnet_200base', help='model type (default: BaseModel)')
parser.add_argument('--filename', type=str, default='best.pth', help='save file name (default: best.pth)')
parser.add_argument('--validaug', type=str, default='A_centercrop_trans', help='validation data augmentation type (default: A_centercrop_trans)')
parser.add_argument("--resize", nargs="+", type=list, default=[224, 224], help='resize size for image when training')
parser.add_argument('--num_classes',type=int, default = 18, help = 'num_classes')
# Container environment
parser.add_argument('--data_dir', type=str, default=os.environ.get('SM_CHANNEL_EVAL', '/opt/ml/input/data/train/'))
parser.add_argument('--save_dir', type=str, default=os.environ.get('SM_CHANNEL_SAVE', './save'))
# Wandb
parser.add_argument('--dotenv_path', default='/opt/ml/image-classification-level1-25/wandb.env', help='input your dotenv path')
parser.add_argument('--wandb_entity', default='boostcamp-25', help='input your wandb entity')
parser.add_argument('--wandb_project', default='image-classification-level1-25', help='input your wandb project')
parser.add_argument('--wandb_unique_tag', default='tag_name', help='input your wandb unique tag')
args = parser.parse_args()
login_wandb(args.dotenv_path)
inference(args)