-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinference.py
79 lines (64 loc) · 2.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
def encode_mask_to_rle(mask):
"""
mask: numpy array binary mask
1 - mask
0 - background
Returns encoded run length
"""
pixels = mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return " ".join(str(x) for x in runs)
def decode_rle_to_mask(rle, height, width):
s = rle.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(height * width, dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(height, width)
def test(data_loader, classes, best_model_dir, save_dir, is_csv=True, thr=0.5):
print("Start inference ...")
idx2class = {i: v for i, v in enumerate(classes)}
model = torch.load(os.path.join(best_model_dir, "best_model.pt"))["model"]
model.cuda()
model.eval()
rles = []
filename_and_class = []
with torch.no_grad():
for step, (images, image_names) in tqdm(
enumerate(data_loader), total=len(data_loader)
):
images = images.cuda()
outputs = model(images)["out"]
# restore original size
outputs = F.interpolate(outputs, size=(2048, 2048), mode="bilinear")
outputs = torch.sigmoid(outputs)
outputs = (outputs > thr).detach().cpu().numpy()
for output, image_name in zip(outputs, image_names):
for c, segm in enumerate(output):
rle = encode_mask_to_rle(segm)
rles.append(rle)
filename_and_class.append(f"{idx2class[c]}_{image_name}")
if is_csv:
classes, filename = zip(*[x.split("_") for x in filename_and_class])
image_name = [os.path.basename(f) for f in filename]
df = pd.DataFrame(
{
"image_name": image_name,
"class": classes,
"rle": rles,
}
)
df.to_csv(os.path.join(save_dir, "submission.csv"), index=False)
print("CSV file creation successful")
else:
return rles, filename_and_class