-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
132 lines (99 loc) · 3.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import datetime
import os
from tqdm import tqdm
import wandb
import torch
import torch.nn.functional as F
from metric import dice_coef
def train(
model,
data_loader,
val_loader,
criterion,
optimizer,
epochs,
start_epoch,
classes,
patience,
save_dir,
):
print(f"Start training..")
best_dice = 0.0
best_epoch = 0
check_patience = 0
for epoch in range(start_epoch, epochs):
model.train()
for step, (images, masks) in enumerate(data_loader):
# gpu 연산을 위해 device 할당
images, masks = images.cuda(), masks.cuda()
model = model.cuda()
# inference
outputs = model(images)["out"]
# loss 계산
loss = criterion(outputs, masks)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# step 주기에 따른 loss 출력
if (step + 1) % 25 == 0:
print(
f'{datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} | '
f"Epoch [{epoch+1}/{epochs}], "
f"Step [{step+1}/{len(data_loader)}], "
f"Loss: {round(loss.item(),4)}"
)
wandb.log({"Train loss": loss.item()})
# validation 주기에 따른 loss 출력 및 best model 저장
dice = validation(epoch + 1, model, val_loader, criterion, classes)
if best_dice < dice:
print(
f"Best performance at epoch: {epoch + 1}, {best_dice:.4f} -> {dice:.4f}"
)
best_dice = dice
best_epoch = epoch + 1
check_patience = 0
# Save best model
output_path = os.path.join(save_dir, "best_model.pt")
torch.save(dict(epoch=epoch+1, model=model), output_path)
else:
check_patience += 1
wandb.log({"VALID DICE": dice, "BEST DICE": best_dice})
if epoch > epochs // 2 and check_patience >= patience:
break
print(f"Best performance at epoch: {best_epoch} >> {best_dice:.4f}")
def validation(epoch, model, data_loader, criterion, classes, thr=0.5):
print(f"Start validation #{epoch:2d}")
model.eval()
dices = []
with torch.no_grad():
total_loss = 0
cnt = 0
for step, (images, masks) in tqdm(
enumerate(data_loader), total=len(data_loader)
):
images, masks = images.cuda(), masks.cuda()
model = model.cuda()
outputs = model(images)["out"]
output_h, output_w = outputs.size(-2), outputs.size(-1)
mask_h, mask_w = masks.size(-2), masks.size(-1)
# restore original size
if output_h != mask_h or output_w != mask_w:
outputs = F.interpolate(outputs, size=(mask_h, mask_w), mode="bilinear")
loss = criterion(outputs, masks)
total_loss += loss
cnt += 1
outputs = torch.sigmoid(outputs)
outputs = (outputs > thr).detach().cpu()
masks = masks.detach().cpu()
dice = dice_coef(outputs, masks)
dices.append(dice)
wandb.log({"Val loss": loss.item()})
dices = torch.cat(dices, 0)
dices_per_class = torch.mean(dices, 0)
dice_str = [f"{c:<12}: {d.item():.4f}" for c, d in zip(classes, dices_per_class)]
dice_str = "\n".join(dice_str)
print(dice_str)
avg_dice = torch.mean(dices_per_class).item()
# dice_dict = {c: d.item() for c, d in zip(classes, dices_per_class)}
# wandb.log({"Val dice": avg_dice, **dice_dict})
return avg_dice