-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathretrieve.py
executable file
·185 lines (149 loc) · 7.47 KB
/
retrieve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import argparse
import json
import sys
from tqdm import tqdm
# note that DensePhrases is installed with editable mode
from densephrases import DensePhrases
# fixed setting
DUMP_DIR = 'DensePhrases/outputs/densephrases-multi_wiki-20181220/dump'
RUNFILE_DIR = "runs"
os.makedirs(RUNFILE_DIR, exist_ok=True)
class Retriever():
def __init__(self, args):
self.R_UNIT = args.r_unit
self.TOP_K = args.top_k
self.args = args
self.initialize_retriever()
def initialize_retriever(self):
if self.args.r_unit == 'dynamic':
assert self.args.query_encoder_phrase is not None
assert self.args.query_encoder_sentence is not None
self.load_dir = [self.args.query_encoder_phrase, self.args.query_encoder_sentence]
else:
self.load_dir = [self.args.query_encoder_name_or_dir]
# load model
self.model = DensePhrases(
# change query encoder after re-training
# p_load_dir=self.args.query_encoder_phrase,
# s_load_dir=self.args.query_encoder_sentence,
load_dir=self.load_dir,
dump_dir=DUMP_DIR,
index_name=self.args.index_name
)
def retrieve(self, single_query_or_queries_dict):
queries_batch = []
R_UNIT = self.args.retrieve_mode
print(f'R_UNIT:{self.args.retrieve_mode}')
if isinstance(single_query_or_queries_dict, dict): # batch search
queries, qids = single_query_or_queries_dict['queries'], single_query_or_queries_dict['qids']
# batchify
N = self.args.batch_size
for i in range(0, len(queries), N):
batch = queries[i:i+N]
queries_batch.append(batch)
with open(f"{RUNFILE_DIR}/{self.args.runfile_name}", "w") as fw:
# generate runfile
print(
f"generating runfile: {RUNFILE_DIR}/{self.args.runfile_name}")
# iterate through batch
idx = 0
for batch_query in tqdm(queries_batch):
# retrieve
result, meta, meta = self.model.search(
batch_query, retrieval_unit=self.R_UNIT, top_k=self.TOP_K, return_meta=True, return_meta=True, agg_add_weight=self.args.agg_add_weight)
if self.args.static:
result_phrase, meta_phrase = self.model.search(
batch_query, retrieval_unit='phrase', top_k=self.TOP_K)
phrase_sentence = []
for sentences, phrase_answer_list in zip(result, result_phrase):
phrase_answer_list_no_subset = []
for answer in phrase_answer_list:
is_in = False
for pre_answer in phrase_answer_list_no_subset:
if answer in pre_answer:
is_in = True
if not is_in:
phrase_answer_list_no_subset.append(answer)
phrase_sentence.append(
phrase_answer_list_no_subset + sentences)
result = phrase_sentence
# write to runfile
for i in range(len(result)):
fw.write(f"{qids[idx]}\t{result[i]}\t{meta[i]}\n")
idx += 1
return None
elif isinstance(single_query_or_queries_dict, str): # online search
result = self.model.search(
single_query_or_queries_dict, retrieval_unit=self.R_UNIT, top_k=self.TOP_K)
if self.args.static:
phrase_sentence = []
result_phrase, meta_phrase = self.model.search(
single_query_or_queries_dict, retrieval_unit='phrase', top_k=self.TOP_K)
phrase_answer_list_no_subset = []
for answer in result_phrase:
is_in = False
for pre_answer in phrase_answer_list_no_subset:
if answer in pre_answer:
is_in = True
if not is_in:
phrase_answer_list_no_subset.append(answer)
phrase_sentence.append(phrase_answer_list_no_subset + result)
result = phrase_sentence[0]
return result
else:
raise NotImplementedError
if __name__ == "__main__":
# parse arguments
parser = argparse.ArgumentParser(
description='Retrieve query-relevant collection with varying topK.')
parser.add_argument('--query_encoder_name_or_dir', type=str, default="princeton-nlp/densephrases-multi",
help="query encoder name registered in huggingface model hub OR custom query encoder checkpoint directory")
parser.add_argument('--index_name', type=str, default="start/1048576_flat_OPQ96_small",
help="index name appended to index directory prefix")
parser.add_argument('--query_list_path', type=str, default="DensePhrases/densephrases-data/open-qa/nq-open/test_preprocessed.json",
help="use batch search by default")
parser.add_argument('--single_query', type=str, default=None,
help="if presented do online search instead of batch search")
parser.add_argument('--runfile_name', type=str, default="run.tsv",
help="output runfile name which indluces query id and retrieved collection")
parser.add_argument('--batch_size', type=int, default=128,
help="#query to process with parallel processing")
parser.add_argument('--retrieve_mode', type=str, default="sentence",
help="R UNIT")
parser.add_argument('--agg_add_weight', type=bool, default=False,
help="weight scores for duplicate unit when aggregate")
parser.add_argument("--truecase", action="store_true",
help="set True when we use case-sentive language model")
parser.add_argument("--static", action="store_true")
parser.add_argument('--r_unit', type=str, default='sentence')
parser.add_argument('--top_k', type=int, default=100)
parser.add_argument('--query_encoder_phrase', type=str, default=None,
help="custom query encoder checkpoint directory")
parser.add_argument('--query_encoder_sentence', type=str, default=None,
help="custom query encoder checkpoint directory")
args = parser.parse_args()
# to prevent collision with DensePhrase native argparser
sys.argv = [sys.argv[0]]
# define input for retriever: batch or online search
if args.single_query is None:
with open(args.query_list_path, 'r') as fr:
qa_data = json.load(fr)
# get all query list
queries, qids = [], []
for sample in qa_data['data']:
queries.append(sample['question'])
qids.append(sample['id'])
inputs = {
'queries': queries,
'qids': qids,
}
# single query
else:
inputs = args.single_query
# initialize retriever
retriever = Retriever(args)
# run
result = retriever.retrieve(single_query_or_queries_dict=inputs)
if args.single_query is not None:
print(f"query: {args.single_query}, result: {result}")