-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_ralm.py
executable file
·175 lines (139 loc) · 6.57 KB
/
run_ralm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""Ask a question to the notion database."""
import sys
import argparse
from typing import List
from langchain.chat_models import ChatOpenAI # for `gpt-3.5-turbo` & `gpt-4`
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.prompts import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import BaseRetriever, Document
import gradio as gr
from retrieve import Retriever
DEFAULT_QUESTION="Wikipedia 2018 english dump에서 궁금한 점을 질문해주세요.\n예를들어 \n\n- Where are mucosal associated lymphoid tissues present in the human body and why?\n- When did korean drama started in the philippines?\n- When did the financial crisis in greece start?"
TEMPERATURE=0
class LangChainCustomRetrieverWrapper(BaseRetriever):
def __init__(self, args):
self.args = args
self.retriever = Retriever(args) # DensePhrase
def get_relevant_documents(self, query: str) -> List[Document]:
"""Get texts relevant for a query.
Args:
query: string to find relevant texts for
Returns:
List of relevant documents
"""
print(f"query = {query}")
# retrieve
results = self.retriever.retrieve(single_query_or_queries_dict=query)
# make result list of Document object
return [Document(page_content=result, metadata={'source': f'source_{idx}'}) for idx, result in enumerate(results)]
async def aget_relevant_documents(self, query: str) -> List[Document]: # abstractmethod
raise NotImplementedError
class RaLM:
def __init__(self, args):
self.args = args
self.initialize_ralm()
def initialize_ralm(self):
# initialize custom retriever
self.retriever = LangChainCustomRetrieverWrapper(args)
# prompt for RaLM
system_template = """Use the following pieces of context to answer the users question.
Take note of the sources and include them in the answer in the format: "SOURCES: source1 source2", use "SOURCES" in capital letters regardless of the number of sources.
Always try to generate answer from source.
----------------
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
llm = ChatOpenAI(model_name=self.args.model_name, temperature=TEMPERATURE)
self.chain = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=self.retriever,
return_source_documents=True,
reduce_k_below_max_tokens=True,
chain_type_kwargs=chain_type_kwargs,
)
def run_chain(self, question, force_korean=False):
if force_korean:
question = f"{question} 본문을 참고해서 한글로 대답해줘"
result = self.chain({"question": question})
# postprocess
result['answer'] = self.postprocess(result['answer'])
if isinstance(result['sources'], str):
result['sources'] = self.postprocess(result['sources'])
result['sources'] = result['sources'].split(', ')
result['sources'] = [src.strip() for src in result['sources']]
# print result
self.print_result(result)
return result
def print_result(self, result):
print(f"Answer: {result['answer']}")
print(f"Sources: ")
print(result['sources'])
assert(isinstance(result['sources'], list))
nSource = len(result['sources'])
for i in range(nSource):
source_title = result['sources'][i]
print(f"{source_title}: ")
if 'source_documents' in result:
for j in range(len(result['source_documents'])):
if result['source_documents'][j].metadata['source'] == source_title:
print(result['source_documents'][j].page_content)
break
def postprocess(self, text):
# remove final parenthesis (bug with unknown cause)
if text.endswith(')') or text.endswith('(') or text.endswith('[') or text.endswith(']'):
text = text[:-1]
return text.strip()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Ask a question to the notion DB.')
# General
parser.add_argument('--question', type=str, default=None, required=True, help='The question to ask for database')
parser.add_argument('--model_name', type=str, default='gpt-3.5-turbo-16k-0613', help='model name for openai api')
# Retriever: Densephrase
parser.add_argument(
"--query_encoder_name_or_dir",
type=str,
default="princeton-nlp/densephrases-multi-query-multi",
help="query encoder name registered in huggingface model hub OR custom query encoder checkpoint directory",
)
parser.add_argument(
"--index_name",
type=str,
default="start/1048576_flat_OPQ96_small",
help="index name appended to index directory prefix",
)
parser.add_argument(
"--static",
action="store_true",
)
args = parser.parse_args()
# to prevent collision with DensePhrase native argparser
sys.argv = [sys.argv[0]]
# initialize class
app = RaLM(args)
def question_answer(question):
result = app.run_chain(question=question, force_korean=False)
return result['answer'],\
'\n######################################################\n\n'.join([f"Source {idx}\n{doc.page_content}" for idx, doc in enumerate(result['source_documents'])])
# launch gradio
gr.Interface(
fn=question_answer,
inputs=gr.inputs.Textbox(default=DEFAULT_QUESTION, label="질문"),
outputs=[
gr.inputs.Textbox(default="챗봇의 답변을 표시합니다.", label="생성된 답변"),
gr.inputs.Textbox(
default="prompt에 사용된 검색 결과들을 표시합니다.", label="prompt에 첨부된 검색 결과들"
),
],
title="지식기반 챗봇",
theme="dark-grass",
description="사용자의 지식베이스에 기반해서 대화하는 챗봇입니다.\n본 예시에서는 wikipedia dump에서 검색한 후 이를 바탕으로 답변을 생성합니다.\n\n retriever: densePhrase, generator: gpt-3.5-turbo-16k-0613 (API)",
).launch(share=True)