-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdiffdrive_control_mpc_alternate.py
247 lines (204 loc) · 6.37 KB
/
diffdrive_control_mpc_alternate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Example diffdrive_control_mpc.py
Author: Joshua A. Marshall <[email protected]>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
import numpy as np
import matplotlib.pyplot as plt
import cvxpy as cp
from scipy import signal
from mobotpy.models import DiffDrive
from mobotpy.integration import rk_four
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 30.0
T = 0.1
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# %%
# UNCONSTRAINED MPC CONTROLLER DESIGN
# Lookahead time steps
P = 50
# Decide on state and input cost matrices
smallQ = np.diag([1.0, 1.0, 2.0])
smallR = np.diag([1.0, 1.0])
# Create a new desired trajectory time array with sufficient time for the MPC
t_d = np.arange(0.0, SIM_TIME + P * T, T)
# %%
# VEHICLE SETUP
# Set the track length of the vehicle [m]
ELL = 1.0
# Create a vehicle object of type DiffDrive
vehicle = DiffDrive(ELL)
# %%
# COMPUTE THE REFERENCE TRAJECTORY
# Radius of the circle [m]
R = 10.0
# Angular rate [rad/s] at which to traverse the circle
OMEGA = 0.1
# Pre-compute the desired trajectory
x_d = np.zeros((3, N + P))
u_d = np.zeros((2, N + P))
for k in range(0, int(N / 2)):
x_d[0, k] = R * np.sin(OMEGA * t_d[k])
x_d[1, k] = R * (1 - np.cos(OMEGA * t_d[k]))
x_d[2, k] = OMEGA * t_d[k]
u_d[:, k] = vehicle.uni2diff(np.array([R * OMEGA, OMEGA]))
for k in range(int(N / 2), N + P):
x_d[0, k] = x_d[0, k - 1] + R * OMEGA * T
x_d[1, k] = x_d[1, k - 1]
x_d[2, k] = 0
u_d[:, k] = vehicle.uni2diff(np.array([R * OMEGA, 0]))
# %%
# SIMULATE THE CLOSED-LOOP SYSTEM
# Initial conditions
x_init = np.zeros(3)
x_init[0] = 0.0
x_init[1] = 3.0
x_init[2] = 0.0
# Setup some arrays
x = np.zeros((3, N))
u = np.zeros((2, N))
x[:, 0] = x_init
for k in range(1, N):
# Simulate the differential drive vehicle motion
x[:, k] = rk_four(vehicle.f, x[:, k - 1], u[:, k - 1], T)
# Set vectors for optimization
x_MPC = cp.Variable((3, P))
u_MPC = cp.Variable((2, P))
# Initialize the cost function and constraints
J = 0
constraints = []
# For each lookahead step
for j in range(0, P):
# Compute the approximate linearization
A = np.array(
[
[
0,
0,
-0.5
* (u_d[0, k + j - 1] + u_d[1, k + j - 1])
* np.sin(x_d[2, k + j - 1]),
],
[
0,
0,
0.5
* (u_d[0, k + j - 1] + u_d[1, k + j - 1])
* np.cos(x_d[2, k + j - 1]),
],
[0, 0, 0],
]
)
B = np.array(
[
[0.5 * np.cos(x_d[2, k + j - 1]), 0.5 * np.cos(x_d[2, k + j - 1])],
[0.5 * np.sin(x_d[2, k + j - 1]), 0.5 * np.sin(x_d[2, k + j - 1])],
[-1 / ELL, 1 / ELL],
]
)
# Find a discrete time model of the system using zero-order hold
d_model = signal.cont2discrete(
(A, B, np.eye(3), np.zeros((3, 2))), T, method="zoh"
)
F = d_model[0]
G = d_model[1]
# Increment the cost function
J += cp.quad_form(x_MPC[:, j] - x_d[:, k + j], smallQ) + cp.quad_form(
u_MPC[:, j], smallR
)
# Enter the "subject to" constraints
constraints += [
x_MPC[:, j]
== x_d[:, k + j]
+ F @ (x_MPC[:, j - 1] - x_d[:, k + j - 1])
+ G @ (u_MPC[:, j - 1] - u_d[:, k + j - 1])
]
constraints += [x_MPC[:, 0] == x[:, k]]
# constraints += [u_MPC[:, j] <= 1.5 * np.ones(2)]
# constraints += [u_MPC[:, j] >= -1.5 * np.ones(2)]
# Solve the optimization problem
problem = cp.Problem(cp.Minimize(J), constraints)
problem.solve(verbose=False)
# Set the control input to the first element of the solution
u[:, k] = u_MPC[:, 0].value
# %%
# MAKE PLOTS
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states as a function of time
fig1 = plt.figure(1)
fig1.set_figheight(6.4)
ax1a = plt.subplot(411)
plt.plot(t, x_d[0, 0:N], "C1--")
plt.plot(t, x[0, :], "C0")
plt.grid(color="0.95")
plt.ylabel(r"$x$ [m]")
plt.setp(ax1a, xticklabels=[])
plt.legend(["Desired", "Actual"])
ax1b = plt.subplot(412)
plt.plot(t, x_d[1, 0:N], "C1--")
plt.plot(t, x[1, :], "C0")
plt.grid(color="0.95")
plt.ylabel(r"$y$ [m]")
plt.setp(ax1b, xticklabels=[])
ax1c = plt.subplot(413)
plt.plot(t, x_d[2, 0:N] * 180.0 / np.pi, "C1--")
plt.plot(t, x[2, :] * 180.0 / np.pi, "C0")
plt.grid(color="0.95")
plt.ylabel(r"$\theta$ [deg]")
plt.setp(ax1c, xticklabels=[])
ax1d = plt.subplot(414)
plt.step(t, u[0, :], "C2", where="post", label="$v_L$")
plt.step(t, u[1, :], "C3", where="post", label="$v_R$")
plt.grid(color="0.95")
plt.ylabel(r"$\bm{u}$ [m/s]")
plt.xlabel(r"$t$ [s]")
plt.legend()
# Save the plot
# plt.savefig("../agv-book/figs/ch4/control_approx_linearization_fig1.pdf")
# Plot the position of the vehicle in the plane
fig2 = plt.figure(2)
plt.plot(x_d[0, 0:N], x_d[1, 0:N], "C1--", label="Desired")
plt.plot(x[0, :], x[1, :], "C0", label="Actual")
plt.axis("equal")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(x[0, 0], x[1, 0], x[2, 0])
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C2", alpha=0.5, label="Start")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(
x[0, N - 1], x[1, N - 1], x[2, N - 1]
)
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Save the plot
# plt.savefig("../agv-book/figs/ch4/control_approx_linearization_fig2.pdf")
# Show all the plots to the screen
plt.show()
# %%
# MAKE AN ANIMATION
# Create the animation
ani = vehicle.animate_trajectory(x, x_d, T)
# Create and save the animation
# ani = vehicle.animate_trajectory(
# x, x_d, T, True, "../agv-book/gifs/ch4/control_approx_linearization.gif"
# )
# Show the movie to the screen
# plt.show()
# Show animation in HTML output if you are using IPython or Jupyter notebooks
from IPython.display import display
plt.rc("animation", html="jshtml")
display(ani)
plt.close()