-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathoneD_discrete_control.py
124 lines (94 loc) · 2.55 KB
/
oneD_discrete_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
Example oneD_discrete_control.py
Author: Joshua A. Marshall <[email protected]>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
from mobotpy.models import Cart
# %%
# PARAMETERS
# Set some parameters that describe the desired behaviour
ZETA = 1.1
OMEGA_N = np.sqrt(0.3)
# Define the sample time [s]
T = 0.5
# Compute the pole locations
lambda_s = np.roots([1, 2 * ZETA * OMEGA_N, OMEGA_N ** 2])
lambda_z = np.exp(lambda_s * T)
# Define the vehicle mass [kg]
M = 10.0
# Define the system matrices
F = np.array([[1, T], [0, 1]])
G = np.array([[T ** 2 / (2 * M)], [T / M]])
# Find gain matrix K that places the poles at lambda_z
K = signal.place_poles(F, G, lambda_z)
# %%
# FUNCTION DEFINITIONS
def vehicle(x, u, F, G):
"""Discrete-time 1D dynamic vehicle model."""
x_new = F @ x + G @ [u]
return x_new
def controller(x, K):
"""Proportional controller."""
u = -K @ x
return u
# %%
# RUN SIMULATION
# Create an array of time values [s]
SIM_TIME = 30.0
t = np.arange(0, SIM_TIME, T)
N = np.size(t)
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((2, N))
u = np.zeros(N)
# Set the initial position [m], velocity [m/s], and force input [N]
x[0, 0] = 1.0
x[1, 0] = 0.0
u[0] = 0.0
# Run the simulation
for k in range(1, N):
x[:, k] = vehicle(x[:, k - 1], u[k - 1], F, G)
u[k] = controller(x[:, k], K.gain_matrix)
# %%
# MAKE A PLOT
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states (x) and input (u) vs time (t)
fig1 = plt.figure(1)
ax1a = plt.subplot(311)
plt.plot(t, x[0, :], "C0")
plt.grid(color="0.95")
plt.ylabel(r"$x_1$ [m]")
plt.setp(ax1a, xticklabels=[])
ax1b = plt.subplot(312)
plt.plot(t, x[1, :], "C0")
plt.grid(color="0.95")
plt.ylabel(r"$x_2$ [m/s]")
plt.setp(ax1b, xticklabels=[])
ax1c = plt.subplot(313)
plt.step(t, u, "C1", where="post")
plt.grid(color="0.95")
plt.ylabel(r"$u$ [N]")
plt.xlabel(r"$t$ [s]")
# Save the plot
plt.savefig("../agv-book/figs/ch2/oneD_discrete_control_fig1.pdf")
# %%
# MAKE AN ANIMATION
# Set the side length of the vehicle [m]
LENGTH = 1.0
# Let's use the Cart class to create an animation
vehicle = Cart(LENGTH)
# Create and save the animation
ani = vehicle.animate(
x[0, :], T, True, "../agv-book/gifs/ch2/oneD_discrete_control.gif"
)
# %%
# Show all the plots to the screen
plt.show()