-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoders.py
152 lines (129 loc) · 4.7 KB
/
encoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from torch import nn
import layers as ls
from typing import List, Union
from typing_extensions import Literal
__all__ = ["get_mlp"]
def get_mlp(
n_in: int,
n_out: int,
layers: List[int],
layer_normalization: Union[None, Literal["bn"], Literal["gn"]] = None,
output_normalization: Union[
None,
Literal["fixed_sphere"],
Literal["learnable_sphere"],
Literal["fixed_box"],
Literal["learnable_box"],
] = None,
output_normalization_kwargs=None,
):
"""
Creates an MLP.
Args:
n_in: Dimensionality of the input data
n_out: Dimensionality of the output data
layers: Number of neurons for each hidden layer
layer_normalization: Normalization for each hidden layer.
Possible values: bn (batch norm), gn (group norm), None
output_normalization: (Optional) Normalization applied to output of network.
output_normalization_kwargs: Arguments passed to the output normalization, e.g., the radius for the sphere.
"""
modules: List[nn.Module] = []
def add_module(n_layer_in: int, n_layer_out: int, last_layer: bool = False):
modules.append(nn.Linear(n_layer_in, n_layer_out))
# perform normalization & activation not in last layer
if not last_layer:
if layer_normalization == "bn":
modules.append(nn.BatchNorm1d(n_layer_out))
elif layer_normalization == "gn":
modules.append(nn.GroupNorm(1, n_layer_out))
modules.append(nn.LeakyReLU())
return n_layer_out
if len(layers) > 0:
n_out_last_layer = n_in
else:
assert n_in == n_out, "Network with no layers must have matching n_in and n_out"
modules.append(layers.Lambda(lambda x: x))
layers.append(n_out)
for i, l in enumerate(layers):
n_out_last_layer = add_module(n_out_last_layer, l, i == len(layers) - 1)
if output_normalization_kwargs is None:
output_normalization_kwargs = {}
if output_normalization == "fixed_sphere":
modules.append(ls.RescaleLayer(fixed_r=True, **output_normalization_kwargs))
elif output_normalization == "learnable_sphere":
modules.append(ls.RescaleLayer(init_r=1.0, fixed_r=False))
elif output_normalization == "fixed_box":
modules.append(
ls.SoftclipLayer(
n=n_out, fixed_abs_bound=True, **output_normalization_kwargs
)
)
elif output_normalization == "learnable_box":
modules.append(
ls.SoftclipLayer(
n=n_out, fixed_abs_bound=False, **output_normalization_kwargs
)
)
elif output_normalization is None:
pass
else:
raise ValueError("output_normalization")
return nn.Sequential(*modules)
def get_flow(
n_in: int,
n_out: int,
init_identity: bool = False,
coupling_block: Union[Literal["gin", "glow"]] = "gin",
num_nodes: int = 8,
node_size_factor: int = 1,
):
"""
Creates an flow-based network.
Args:
n_in: Dimensionality of the input data
n_out: Dimensionality of the output data
init_identity: Initialize weights to identity network.
coupling_block: Coupling method to use to combine nodes.
num_nodes: Depth of the flow network.
node_size_factor: Multiplier for the hidden units per node.
"""
# do lazy imports here such that the package is only
# required if one wants to use the flow mixing
import FrEIA.framework as Ff
import FrEIA.modules as Fm
def _invertible_subnet_fc(c_in, c_out, init_identity):
subnet = nn.Sequential(
nn.Linear(c_in, c_in * node_size),
nn.ReLU(),
nn.Linear(c_in * node_size, c_in * node_size),
nn.ReLU(),
nn.Linear(c_in * node_size, c_out),
)
if init_identity:
subnet[-1].weight.data.fill_(0.0)
subnet[-1].bias.data.fill_(0.0)
return subnet
assert n_in == n_out
if coupling_block == "gin":
block = Fm.GINCouplingBlock
else:
assert coupling_block == "glow"
block = Fm.GLOWCouplingBlock
nodes = [Ff.InputNode(n_in, name="input")]
for k in range(num_nodes):
nodes.append(
Ff.Node(
nodes[-1],
block,
{
"subnet_constructor": lambda c_in, c_out: _invertible_subnet_fc(
c_in, c_out, init_identity
),
"clamp": 2.0,
},
name=f"coupling_{k}",
)
)
nodes.append(Ff.OutputNode(nodes[-1], name="output"))
return Ff.ReversibleGraphNet(nodes, verbose=False)