-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
201 lines (174 loc) · 5.43 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import random
import torch
import numpy as np
import argparse
import warnings
from eval.eval_metrics import compositional_contrast
from eval_model import eval_model
import utils
import wandb
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)
def train_model(args):
"""
Trains an object-centric model
Prints evaluation metrics every args.eval_iter iterations
Args:
args: Command line arguments specifying training setup
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# fix random seed
seed = random.randint(0, 10000)
utils.set_seed(seed)
# get directory to save model logs
model_dir = utils.setup_direcs(args, seed)
# create model
model = utils.get_model(args)
# set optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# load data
train_loader, val_loader = utils.get_data(args)
# train loop
b_it, glob_it = 0, 0
run_recon_loss = 0.0
while glob_it < args.num_iters:
model.train()
x, _ = next(iter(train_loader))
b_it += 1
optimizer.zero_grad()
x = x.to(device)
if args.encoder == "monet" or args.decoder == "monet":
zh, xh, total_loss = model(x)
else:
zh, xh = model(x)
total_loss = None
# recon loss
recon_loss = (x - xh).square().mean()
run_recon_loss += recon_loss.item()
# c_comp
if args.lam > 0:
jacobian = torch.vmap(torch.func.jacfwd(model.decoder))(zh.flatten(1))
c_comp = compositional_contrast(jacobian, args.inf_slot_dim, args.data)
else:
with torch.no_grad():
c_comp = torch.Tensor([0.0]).to(device)
# total loss
if total_loss == None:
total_loss = recon_loss + args.lam * c_comp
total_loss.backward()
optimizer.step()
glob_it += 1
# lr decay
if args.data == "spriteworld":
decay_rate = 0.5
decay_steps = 100000
optimizer.param_groups[0]["lr"] = args.lr * (
decay_rate ** (glob_it / decay_steps)
)
elif args.data == "synth":
if glob_it == int(args.num_iters * 0.5):
optimizer.param_groups[0]["lr"] = args.lr / 10
# save model
if glob_it % 3000 == 0:
torch.save(
model.state_dict(),
model_dir + "_iter_" + str(glob_it) + "_model_state_dict.pt",
)
# eval model
if glob_it == 1 or glob_it % args.eval_iter == 0 or glob_it == args.num_iters:
train_recon = run_recon_loss / b_it
val_recon, val_c_comp, val_sis = eval_model(args, model, val_loader)
b_it = 0
run_recon_loss = 0.0
print(
"Iteration: ",
glob_it,
"Train Recon: ",
train_recon,
"Val Recon: ",
val_recon,
"Val C_comp: ",
val_c_comp,
"Val SIS: ",
val_sis,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
type=str,
help="Specifies whether to use image data or not",
default="synth",
)
parser.add_argument(
"--encoder",
type=str,
help="Specifies encoder to be used for image experiments",
default="MLP",
)
parser.add_argument(
"--decoder",
type=str,
help="Specifies decoder to be used for image experiments",
default="MLP",
)
parser.add_argument(
"--num_slots",
type=int,
help="Specifies number of slots in ground-truth and inference model",
default="2",
)
parser.add_argument(
"--inf_slot_dim",
type=int,
help="Specifies slot dimension in inference model",
default="3",
)
parser.add_argument(
"--gt_slot_dim",
type=int,
help="Specifies slot dimension in ground-truth model",
default="3",
)
parser.add_argument(
"--lam",
help="Specifies the coefficient on the compositional contrast",
type=float,
default="0",
)
parser.add_argument("--batch_size", type=int, default="64")
parser.add_argument("--lr", type=float, default="4e-4")
parser.add_argument(
"--num_iters",
help="Specifies the number of training iterations",
type=int,
default="200000",
)
parser.add_argument(
"--eval_iter",
help="Evaluation metrics computed and printed every number of iterations given by arg",
type=int,
default="5000",
)
parser.add_argument(
"--nobs", help="Size of dataset for non-image data", type=int, default="80000"
)
parser.add_argument(
"--slot_x_dim",
help="Dimension of slot output for ground-truth model for non-image data",
type=int,
default="20",
)
parser.add_argument(
"--dependent",
help="0 if slots are sampled independently and 1 for dependently for non-image data",
type=int,
default="0",
)
args = parser.parse_args()
if args.data == "synth":
args.encoder = "MLP"
args.decoder = "MLP"
if args.data == "spriteworld":
args.gt_slot_dim = 5
args.lam = 0
train_model(args)