-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproduction.py
71 lines (47 loc) · 2.39 KB
/
production.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from pytorch_pipeline_util import production_dataloader
from yolo_network import TinyYOLOv2
import torch
from draw_rect import production_output
import os
from time import time
def predict(network, data, device, valid_params, mode):
height_and_width_info, output_dir_path, classes, confidence_treshold = valid_params
with torch.set_grad_enabled(False):
for images, images_names in data:
images = images.to(device)
predictions = network(images)
production_output(images, predictions, images_names, valid_params, classes, mode)
def production(classes, height_and_width_info, input_params):
num_classes = len(classes)
*rest, anchors = height_and_width_info
num_epochs = input_params['num_epochs']
images_dir_path = input_params['images_dir_path']
labels_path = input_params['labels_path']
confidence_treshold = input_params['confidence_treshold']
overlap_treshold = input_params['overlap_treshold']
network_type = input_params['network_type']
augment = input_params['augment']
mode = input_params['mode']
output_dir_name = input_params['output_dir_name']
output_dir_name += '_production_' + str(time())
images_output_dir_name = input_params['images_output_dir_name']
output_dir_path = os.path.join(images_output_dir_name, output_dir_name)
os.mkdir(output_dir_path)
print('Making datasets...')
data = production_dataloader(images_dir_path)
device = torch.device("cpu" if not torch.cuda.is_available() else "cuda:0")
network = TinyYOLOv2(num_classes=num_classes, anchors=anchors, network_type=network_type)
trained_model_path = input_params['trained_model_path']
state_dict = torch.load(trained_model_path) if torch.cuda.is_available() else torch.load(trained_model_path, map_location='cpu')
network.load_state_dict(state_dict)
network.to(device)
valid_params = height_and_width_info, output_dir_path, classes, confidence_treshold
predict(network, data, device, valid_params, mode)
# for images, labels in train_loader:
# images = images.to(device)
# labels = labels.to(device)
# outputs = network(images)
# non_max_surpression(outputs)
#for image, output in zip(images, outputs):
# display_images_with_bounding_boxes(image, output, classes, 32, 32, 300, 250)
return network