-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathngramextractor.py
38 lines (31 loc) · 964 Bytes
/
ngramextractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Ngram extractor testfile
str = "a b c d e f g".split(" ")
n = 3;
corpus = {}
# Create temporary dictionary of dictionaries of lists
temp_ngram = {}
for i in range( 1, n + 1 ):
temp_ngram[i] = {}
for j in range( 1, i + 1 ):
temp_ngram[i][j] = []
count = 0;
# Iterate over every word
for word in str:
count += 1
# Loop over every n-gram
for i in range( 1, n + 1 ):
# Loop over every temporary instantion of an n gram
for j in range( 1, i + 1 ):
# Add this word
if count >= j:
temp_ngram[i][j].append(word)
if len( temp_ngram[i][j] ) == i:
# We found a n-gram
token = tuple(temp_ngram[i][j])
if token in corpus:
corpus[token] += 1
else:
corpus[token] = 1
# Reset temporary ngram
temp_ngram[i][j] = []
print corpus